DISEÑO GEOMÉTRICO A DESNIVEL DE LA AVENIDA SUBA CON CALLE 127

LAURA MILENA MAJÉ GÓMEZ
IC-071-2017/1

ADRIANA CAROLINA MORALES GONZÁLEZ
IC-070-2017/1

UNIVERSIDAD MILITAR NUEVA GRANADA
FACULTAD DE INGENIERÍA
PROGRAMA DE INGENIERÍA CIVIL
SEPTIEMBRE 2017
DISEÑO GEOMÉTRICO A DESNIVEL DE LA AVENIDA SUBA CON CALLE 127

LAURA MILENA MAJÉ GÓMEZ
IC-071-2017/1

ADRIANA CAROLINA MORALES GONZÁLEZ
IC-070-2017/1

Trabajo de Grado presentado para optar al
Título de Ingeniero Civil

Tutor: Ing. EDGAR ALBERTO FONSECA HERRERA

UNIVERSIDAD MILITAR NUEVA GRANADA
FACULTAD DE INGENIERÍA CIVIL
DISEÑO GEOMÉTRICO DE VÍAS
SEPTIEMBRE 2017
Le agradecemos a Dios, inicialmente por cada una de nuestras vidas, llenándolas de luz, salud y amor, por acompañarnos y guiar nos a largo de nuestra carrera, ser nuestro mayor apoyo y darnos la fortaleza necesaria para continuar y cul minar esta etapa.

A nuestras familias por ser nuestra mayor motivación, dándonos la oportunidad de estudiar y apoyarnos constantemente brindándonos la mejor educación, para llegar a ser personas integras por medio de su ejemplo y amor.

A nuestra Alma Mater Universidad Militar Nueva Granada.

Al Ingeniero, Edgar Alberto Fonseca Herrera, porque por medio de la pasión que demuestra hacia su carrera y área, fue nuestra inspiración inicial para encaminar este trabajo. Por su continuo interés, orientación, motivación y sobre todo por creer en nosotras.

Al Ingeniero, José Barón por su colaboración y constante apoyo.
El presente trabajo es una propuesta de diseño geométrico a desnivel para eliminar la semaforización actual de la Avenida Suba con Calle 127, lo anterior para mitigar los niveles de congestión y embotellamiento, que se presentan en esta zona. Por medio de las siguientes herramientas: Google Maps, Google Earth, AutoCad Civil 3D e InfraWorks, se observó la geometría actual, se plantearon las diferentes propuestas de diseño y finalmente se seleccionó la alternativa adecuada para alcanzar los objetivos planteados inicialmente.

Palabras claves:
- Diseño geométrico
- Intersección vial
- Intersección a desnivel
<table>
<thead>
<tr>
<th>TABLA DE CONTENIDO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRADECIMIENTOS</td>
<td>iii</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>iv</td>
</tr>
<tr>
<td>CAPÍTULO 1</td>
<td>1</td>
</tr>
<tr>
<td>ASPECTOS GENERALES</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introducción</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Descripción y Formulación del Problema</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Alcance</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Justificación</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Antecedentes</td>
<td>4</td>
</tr>
<tr>
<td>1.6 Objetivos</td>
<td>5</td>
</tr>
<tr>
<td>CAPÍTULO 2</td>
<td>6</td>
</tr>
<tr>
<td>2.1 MARCO DE REFERENCIA</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Marco conceptual</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1 Ejemplo de interacciones a desnivel</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2 Localización General del Proyecto</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3 Localización Específica del Proyecto</td>
<td>13</td>
</tr>
<tr>
<td>CAPÍTULO 3</td>
<td>17</td>
</tr>
<tr>
<td>MARCO METODOLÓGICO</td>
<td>17</td>
</tr>
<tr>
<td>CAPÍTULO 4</td>
<td>18</td>
</tr>
<tr>
<td>RECOPIACIÓN Y ANÁLISIS DE LA INFORMACIÓN</td>
<td>18</td>
</tr>
<tr>
<td>4.1 Recopilación de Información</td>
<td>18</td>
</tr>
</tbody>
</table>
4.1.1 Imágenes de la Intersección en Hora Valle .. 18vi
4.1.2 Imágenes de la Intersección en Hora Pico .. 20
4.1.3 Análisis del Flujo Vehicular de la Intersección ... 22

CAPÍTULO 5 ... 24

PROPUESTAS DE DISEÑOS GEOMÉTRICOS ... 24

5.1 Primera Propuesta: Elevación Calle 127 .. 26
5.2 Segunda Propuesta: Elevación Avenida Suba ... 29
5.3 Tercera Propuesta: Deprimido de Avenida Suba .. 32

CAPÍTULO 6 ... 37

ANÁLISIS DE ALTERNATIVAS EXPUESTAS .. 37

CONCLUSIONES ... 39

RECOMENDACIONES .. 40
<table>
<thead>
<tr>
<th>Ilustración</th>
<th>Descripción</th>
<th>Fuente</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intersección de Avenida Suba con Calle 127</td>
<td>Google Maps; 7 am</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Intersección de Avenida Suba con Calle 127</td>
<td>Autor; 8 am</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Intersección de Avenida Suba con Calle 127</td>
<td>Autor; 8 am</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Fuente: Manual de Diseño Geométrico del Invias</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Fuente: Manual de Diseño Geométrico del Invias</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Fuente: Manual de Diseño Geométrico del Invias</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Localización del Departamento de Cundinamarca</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>Localización de la Ciudad de Bogotá</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>Localización de la Localidad de Suba</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>Intersección de Avenida Suba con Calle 127 Tomada de Google Maps</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>Intersección de Avenida Suba con Calle 127 Tomada de Google Earth</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>Intersección de Avenida Suba con Calle 127 Tomada de Google Maps</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>Establecimientos colíndales a la intersección; C.C. Niza, Tomada con google Maps</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>Establecimientos colíndales a la intersección; Edificio ETB, Tomada con google Maps</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>Establecimientos colíndales a la intersección; Zona residencial, Tomada con google Maps</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>Establecimientos colíndales a la intersección; C.C. Bulevar, Tomada con google Maps</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>
Ilustración 18 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am.......... 18
Ilustración 19 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am......... 18
Ilustración 20 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am......... 19
Ilustración 21 Intersección de Avenida Suba con Calle 127 Fuente: Google Maps; 7 am..... 19
Ilustración 22 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am.......... 20
Ilustración 23 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am.......... 20
Ilustración 24 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am.......... 21
Ilustración 25 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am.......... 21
Ilustración 26 Intersección de Avenida Suba con Calle 127 Fuente: Google Maps; 7 am..... 22
Ilustración 27 presencia de policía en Avenida Suba con Calle 127 Fuente: Autor; 7 am..... 23
Ilustración 28 zona modelada en InfraWorks .. 24
Ilustración 29 Intersección de Avenida Suba con Calle 127 Fuente: InfraWorks 25
Ilustración 30 Modelación final de las propuestas en InfraWorks 25
Ilustración 31 Vista en planta, Elevación calle 127; AutoCAD Civil 3D 26
Ilustración 32 Vista perfil Oeste - Este, Elevación calle 127; AutoCAD Civil 3D 27
Ilustración 33 Vista perfil Este - Oeste, Elevación calle 127; AutoCAD Civil 3D 27
Ilustración 34 Vista 3D con Object Viwer, Elevación calle 127; AutoCAD Civil 3D 28
Ilustración 35 Vista en planta con Object Viwer, Elevación calle 127; AutoCAD Civil 3D 28
Ilustración 36 Vista en 3D, Elevación calle 127; InfraWorks .. 29
Ilustración 37 Vista en planta, Elevación Avenida Suba; AutoCAD Civil 3D 30
Ilustración 38 Vista perfil Norte - Sur, Elevación Avenida Suba; AutoCAD Civil 3D 30
Ilustración 39 Vista perfil Sur - Norte, Elevación Avenida Suba; AutoCAD Civil 3D 31
Ilustración 40 Vista 3D con Object Viwer, Elevación Avenida Suba; AutoCAD Civil 3D 31
Ilustración 41 Vista en planta con Object Viwer, Elevación Avenida Suba; AutoCAD Civil 3D

Ilustración 42 Vista en 3D, Elevación Avenida Suba; InfraWorks

Ilustración 43 Vista en planta, Deprimido Avenida Suba; AutoCAD Civil 3D

Ilustración 44 Vista perfil Norte - Sur, Deprimido Avenida Suba; AutoCAD Civil 3D

Ilustración 45 Vista perfil Sur - Norte, Deprimido Avenida Suba; AutoCAD Civil 3D

Ilustración 46 Vista 3D con Object Viwer, Deprimido Avenida Suba; AutoCAD Civil 3D

Ilustración 47 Vista en planta con Object Viwer, Deprimido Avenida Suba; AutoCAD Civil 3D

Ilustración 48 Vista en 3D, Deprimido Avenida Suba; InfraWorks
CAPÍTULO 1

ASPECTOS GENERALES

1.1 Introducción

Transportarse en la de la ciudad de Bogotá se ha convertido en un real inconveniente debido a que los niveles de congestión son altos dado a que la malla vial es insuficiente para el parque automotor que se encuentra circulando actualmente y que crece día a día, debido a esto se hace necesario plantear soluciones de diseño geométrico a desnivel para sustituir las intersecciones semaforizadas.

En este trabajo se presentan varias posibilidades de Diseño geométrico a desnivel para reemplazar la intersección semaforizada de la Avenida Suba con Calle 127; seleccionando el diseño óptimo que aumente el nivel de servicio y mejore los tiempos de espera. Empleando los conocimientos en Ingeniería de tránsito y trasporte, Ingeniería de vías y Diseño Geométrico de Vías, se diseñaron en AutoCAD Civil 3D y fueron modelados en InfraWorks, las diferentes alternativas planteadas.

1.2 Descripción y Formulación del Problema

Actualmente en la Avenida Suba con Calle 127 se viven congestiones y embotellamientos, generados por el aumento del parque automotor de la ciudad y la insuficiencia de las vías ligada a una falta de actualización en la infraestructura de la malla vial, ya que se ha visto un desarrollo en las estructuras colindantes a la intersección, tales como la construcción
del Centro Comercial Niza y el Bulevar, el edificio de ETB, edificios residenciales, un concesionario y la zona troncal de Transmilenio, debido a esto, es evidente que los ciclos semafóricos no pueden solucionar estos inconvenientes. ¿Cuál sería la propuesta de diseño geométrico a desnivel que sustituya la semaforización de la Avenida Suba con Calle 127 y con esto mitigue el problema de embotellamiento y congestión?
1.3 **Alcance**

Delimitación conceptual

En el desarrollo de este proyecto se hizo uso de los conocimientos adquiridos dentro de la carrera, comprendiendo áreas técnicas como Ingeniería de Tránsito y Transporte, Ingeniería de Vías y Diseño Geométrico de Vías.

Delimitación cronológica

El diseño fue realizado durante un lapso de tiempo de cinco meses, comenzando en abril del 2017 y finalizando en septiembre del mismo año.

1.4 **Justificación**

El objeto de este proyecto es proponer una solución al problema de movilidad que se presenta en la intersección de la Av. Suba con Calle 127, mediante un diseño geométrico en deprimido o elevado, que permita eliminar la semaforización actual, separando el
tránsito de los diferentes corredores que hacen parte de esta, los cuales son la Calle 127, la Avenida Suba y Transmilenio.

Lo anterior permite aumentar su utilidad, reducir la congestión existente y generar un flujo vehicular continuo.

Debe tenerse en cuenta que esta solución tendrá que ir acompañada de una actualización de la infraestructura del resto de la Avenida Suba y de la Calle 127, con estructuras como puentes, deprimidos, etc., para que se pueda contar con resultados de movilidad más eficientes y eficaces.

1.5 Antecedentes

El desarrollo social de la intersección y con esta el de la ciudad, tiene un gran nivel de afectación en el uso de las vías, ya que entre más existan lugares públicos y construcciones colindantes, estas van a tener mayor necesidad de servicio.

En la zona de la intersección de la Avenida Suba con Calle 127 se han construido varias estructuras como el Centro Comercial Bulevar Niza y Niza, el edificio de ETB, edificios residenciales, la estación de Transmilenio Niza-Calle 127, el supermercado Surtifruver Niza, el restaurante Papa John's Niza y la Registraduría Auxiliar de Suba.

El día 11 de diciembre del año 1988 se dio apertura al Centro Comercial Bulevar Niza, de tres pisos, con una superficie total de 94.507m², 330 locales y 900 espacios para estacionamiento, actualmente.

El Centro Comercial Niza fue construido para el año 1978 y tiene 37 locales. La estación de transporte masivo Transmilenio Niza, se inauguró el día 29 de abril del año 2006, hizo
parte de la fase dos de Transmilenio y se diseñó para atender la demanda de los barrios Niza Norte, Calatrava, Las Villas y sus alrededores.

1. 6 Objetivos

Objetivo General

Proponer el diseño geométrico a desnivel en la Avenida Suba con calle 127 que elimine la semaforización actual para mitigar los niveles de congestión en esta zona.

Objetivos Específicos

- Definir de manera conceptual las propuestas para eliminar los entrecruzamientos en la intersección.
- Implementar soluciones geométricas a desnivel que permitan eliminar las condiciones actuales.
- Realizar diseños geométricos de cada una de las propuestas en AutoCAD Civil 3D y su correspondiente modelación usando Infraworks.
CAPÍTULO 2

2.1 MARCO DE REFERENCIA

Una carretera es una infraestructura de transporte acondicionada para permitir la circulación de vehículos de manera continua, con niveles adecuados de seguridad y comodidad. Con base en esto, el diseño geométrico se define como el proceso de correlación entre los elementos físicos de la vía y las características de operación de los vehículos, mediante el uso de las matemáticas, la física y la geometría, es la parte más importante del proyecto pues es el que establece su configuración geométrica tridimensional, para que la vía sea funcional, segura, cómoda, estética, económica y compatible con el medio ambiente.

La funcionalidad de la vía depende de su tipo, características geométricas y volúmenes de tránsito que sea capaz de manejar, basada en un diseño simple, uniforme, consistente y que se adapte en lo posible a la topografía natural, los usos del suelo y procure mitigar los impactos ambientales.

El diseño depende de diferentes factores o requisitos que pueden ser externos o previamente existentes, e internos o propios de la vía.

Los factores externos están relacionados con la topografía del terreno natural, la conformación geológica y geotécnica del mismo, el volumen y características del tránsito actual y futuro, los valores ambientales, la climatología e hidrología de la zona, los desarrollos urbanísticos existentes y previstos, y los parámetros socioeconómicos del área.
Los factores internos contemplan las velocidades a tener en cuenta para el diseño y los efectos operacionales de la geometría, principalmente los vinculados con la seguridad necesaria, estética y armonía de la solución.

Todo el proceso inicia con la definición de los corredores favorables que conecten los extremos del proyecto y unan puntos intermedios de paso obligado, refiriéndose a actividades de Fase 1 llamada Pre factibilidad. Se hace la selección de la ruta más favorable y con esto se inician las etapas del diseño geométrico, dándole forma física a la vía y adaptándola a los requisitos para satisfacer al máximo sus objetivos. Con esto se inicia la Fase 2 de Factibilidad o Anteproyecto, el cual estudia y aprueba la rentabilidad del proyecto, la Fase 3 continua con los diseños definitivos de la carretera, como geométricos, estructurales y de obras complementarias.

Con lo anterior, se llega a obtener un alineamiento en planta o diseño geométrico horizontal, el cual cuenta con el cambio de direcciones, rumbos y azimuts a lo largo del eje, mediante rectas, curvas circulares o espirales de transición, también se obtiene un diseño geométrico vertical, siendo la proyección del eje real o espacial de la vía sobre una superficie vertical paralela al mismo, junto a cambios de pendientes a lo largo del eje, mediante rectas contiguas de pendientes uniformes enlazadas con curvas verticales parabólicas. Las secciones transversales sucesivas se relacionan con el ancho de la vía y se componen por la calzada, las bermas, las cunetas y taludes laterales.

La selección de la mejor alternativa debe buscar que de acuerdo a las condiciones topográficas, geológicas, hidrológicas y de drenaje, ofrezca el menor costo con el mayor índice de utilidad económica, social y estética.
Dentro del diseño geométrico se deben tener en cuenta los siguientes conceptos:

- La línea de ceros es la proyección de mínimo movimiento de tierra que, pasa por los puntos obligados y conserva la pendiente uniforme especificada con la mínima necesidad de cortes o rellenos.

- Las curvas horizontales circulares simples son arcos de circunferencia de un solo radio que unen dos tangentes consecutivas, que no necesariamente son circulares.

- La posición de un alineamiento recto se puede fijar por dos métodos: mediante las coordenadas planas (Norte y Este) de sus puntos extremos o mediante su dirección (Rumbo o Azimut) y longitud.

- Las curvas circulares compuestas son aquellas que están formadas por dos o más curvas circulares simples. A pesar de que no son muy comunes, se pueden emplear en terrenos montañosos, cuando se quiere que la carretera quede lo más ajustada posible a la forma del terreno o topografía natural, lo cual reduce el movimiento de tierras. También se pueden utilizar cuando existen limitaciones de libertad en el diseño, como, en los accesos a puentes, en los pasos a desnivel y en las intersecciones.

- La velocidad es el elemento básico para el diseño geométrico de carreteras y el parámetro de cálculo de la mayoría de los componentes del proyecto. Debe ser estudiada, regulada y controlada con el fin de que origine un equilibrio en todos los aspectos, garantizando la seguridad. Es la velocidad de referencia que permite definir las características geométricas mínimas de todos los elementos del trazado.
2.2 Marco conceptual

Diseño geométrico: Se encarga de determinar las características geométricas de una vía a partir de factores como el tránsito, topografía, velocidades, de modo que se pueda circular de una manera cómoda y segura.

Intersección vial: Las intersecciones son zonas comunes de dos o más carreteras que se cruzan al mismo (o diferente) nivel y en las que se incluyen las calzadas que pueden utilizar los vehículos para el desarrollo de todos los movimientos posibles. (INVIAS, 2008)

Una intersección vial es el cruce de dos o de más calles, teniendo como principal función es que quienes las transitan puedan conectarse con otra vía y así llegar al destino. Las intersecciones a desnivel es el ajuste de dos o más ejes de transporte a diferentes alturas para no interrumpir el flujo de tráfico entre otras rutas de tránsito cuando se cruzan entre sí. Los tipos de básicos de intercepciones a desnivel son de tipo T o de tres vías, que contemplan tres enfoques, por otro lado, están las intercepciones de cuatro vías o tréboles, que tienen cuatro accesos, y por ultimo las intersecciones de vías múltiples, que tienen cinco o más accesos.

Intersección a desnivel: Un paso a desnivel es un conjunto de ramales que se proyecta para facilitar el paso del tránsito entre unas carreteras que se cruzan en niveles diferentes. También puede ser la zona en la que dos o más carreteras se cruzan a distinto nivel para el desarrollo de todos los movimientos posibles de cambio de una carretera a otra, con el mínimo de puntos de conflicto posible. (Suárez Hugo, Santander Carlos)
2.2.1 Ejemplo de interacciones a desnivel:

- Trompeta en carreteras no divididas

![Ilustración 4 Fuente: Manual de Diseño Geométrico del Invías](image)

- Trompeta en carreteras divididas

![Ilustración 5 Fuente: Manual de Diseño Geométrico del Invías](image)
➢ Trébol en carreteras no divididas

Ilustración 6 Fuente: Manual de Diseño Geométrico del Invías

➢ Trébol en carreteras divididas

Ilustración 7 Fuente: Manual de Diseño Geométrico del Invías
2.2.2 Localización General del Proyecto

La intersección para la cual se diseñó la mejora se encuentra en el noroccidente de la ciudad de Bogotá – Colombia, en la localidad número 11, llamada Suba. Esta localidad cuenta con una gran zona residencial, al igual que actividad industrial, comercial y de servicios y es considerada como una de las localidades más pobladas de la ciudad.
2.2.3 Localización Específica del Proyecto

El proyecto comprende la intersección vial de la Avenida Suba con la Calle 127. Siendo la Avenida Suba una de las vías principales de la ciudad, debido a que conecta la localidad de Suba con el resto de la capital de norte a sur y adicionalmente cuenta con una zona troncal de Transmilenio. Y la calle 127, una vía del norte de la ciudad, también importante, cuyo trazado va de oriente a occidente. Actualmente a sus alrededores cuenta con el Centro Comercial Niza y el Bulevar Niza, un edificio de ETB, edificios residenciales, zona bancaria, un concesionario, entre otras instalaciones importantes para la comunidad.

Ilustración 11 Intersección de Avenida Suba con Calle 127 Tomada de Google Maps
Ilustración 12 Intersección de Avenida Suba con Calle 127 Tomada de Google Earth

Ilustración 13 Intersección de Avenida Suba con Calle 127 Tomada de Google Maps
Ilustración 14 Establecimientos colindales a la intersección; C.C. Niza,

Tomada con google Maps.

Ilustración 15 Establecimientos colindales a la intersección; Edificio ETB.

Tomada con google Maps.
Ilustración 16 E establecimientos colindales a la intersección; Zona residencial, Tomada con google Maps.

Ilustración 17 E establecimientos colindales a la intersección; C.C. Bulevar, Tomada con google Maps.
CAPÍTULO 3

MARCO METODOLÓGICO

La metodología con la que se realizó el proyecto consistió en un análisis del problema inicial de congestión vial evidenciado en las imágenes de Google Maps, Google Earth y fotografías tomadas en sitio para realizar una clasificación de la geometría actual, elaborar diferentes alternativas de diseño geométrico que aporten nuevas soluciones a los problemas de movilidad que presentan actualmente está zona y finalmente elegir la propuesta que cumpla totalmente los objetivos planteados.

- Identificar zonas críticas de movilidad en Bogotá.

 Escoger la intersección sobre la que se va hacer el diseño a desnivel.

 Recolección de información.

 Plantear diferentes propuestas a desnivel.

 Seleccionar las propuestas que cumplan con aspectos técnicos.

 Hacer en AutoCAD CIVIL 3D los diseños geométricos seleccionados.

 Modelar en Infraworks los diseñar a desnivel.

 Conclusiones.

 Recomendaciones.

 Elaborar el informe final.

 Fin
CAPÍTULO 4

RECOPILACIÓN Y ANÁLISIS DE LA INFORMACIÓN

4.1 Recopilación de Información

4.1.1 Imágenes de la Intersección en Hora Valle

Ilustración 18 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am.

Ilustración 19 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am.
Ilustración 20 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am.

Ilustración 21 Intersección de Avenida Suba con Calle 127 Fuente: Google Maps; 7 am
4.1.2 Imágenes de la Intersección en Hora Pico

Ilustración 22 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am.

Ilustración 23 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am.
Ilustración 24 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am.

Ilustración 25 Intersección de Avenida Suba con Calle 127 Fuente: Autor; 10 am.
4.1.3 Análisis del Flujo Vehicular de la Intersección

En las horas pico se hace necesario la presencia de policías de tránsito para el control del flujo vehicular, dando doble semaforización a la Av. Suba; esto quiere decir que el sentido Norte –Sur y Sur – Norte queda con un periodo de 174’’ con vía libre para circular.
Esquema general de la intersección

Ilustración 27 presencia de policía en Avenida Suba con Calle 127 Fuente: Autor; 7 am.
PROPUESTAS DE DISEÑOS GEOMÉTRICOS

Para dar inicio a una propuesta de diseño geométrico, se debe tener en cuenta la geometría existente de las dos vías a replantear. Por medio de lo anterior se obtiene que cada una de las vías tiene un ancho aproximado de 30 a 40 m, los cuales se dividen en 4 carriles para la Calle 127 (por cada sentido) y para la Avenida Suba tres carriles para tráfico mixto y uno que corresponde a la calzada de Transmilenio (por cada sentido). A continuación, se procede con el diseño de cada una de las alternativas por medio de AutoCAD Civil 3D, lo que permite evaluar de una manera adecuada el cumplimiento de las distancias necesarias para elevación o depresión de alguna de las vías principales en mención, por medio de la generación de perfiles longitudinales, los cuales permiten prestar atención a las distancias y las pendientes de cada una de las vías. Y finalmente se lleva a cabo la modelación de las propuestas, por medio de InfraWorks, un software que permite planificar y diseñar proyectos de infraestructura sobre modelos de vías existentes. El proceso que se debe seguir en este software es: inicialmente, generar el modelo por medio de datos vectoriales, datos de mapa de bits y datos de fuentes globales, en el programa en mención, de la zona de

Ilustración 28 zona modelada en InfraWorks
la intersección a rediseñar, a continuación, se parametriza el modelo con las exigencias de la norma actual, se alteran factores como la velocidad de diseño, el estilo y materiales de vía, el ancho del carril, los separadores, andenes y decoración. Finalmente, se debe generar el diseño de la intersección propuesta, ya sea puente o deprimido, y con esto la selección del tramo de interés, exponiendo con esto el estado final de cada una de las propuestas.

El proceso anteriormente mencionado, permite descartar las alternativas que no cumplan con lo exigido para el tipo de vía necesaria en la intersección y adicionalmente a hacer la correcta elección de la mejor alternativa.

Ilustración 29 Intersección de Avenida Suba con Calle 127 Fuente: InfraWorks

Ilustración 30 Modelación final de las propuestas en InfraWorks
A continuación, se presentan las alternativas propuestas, con imágenes del proceso mencionado, el cual conlleva a la elección final.

5.1 Primera Propuesta: Elevación Calle 127

Esta propuesta consiste en eliminar la semaforización de la intersección de la Avenida Suba con Calle 127, por medio de la elevación de cuatro carriles correspondientes al sentido Oriente-Occidente del tramo mencionado, mientras los carriles de la Avenida Suba, incluyendo las calzadas de Transmilenio permanecen a nivel, pero contando con un carril más por cada sentido, conectantes a nivel y un puente peatonal.

La imagen anterior, corresponde a la geometría planteada, junto con los ejes y corredores que el programa anteriormente indicado, permite proponer. Y las imágenes a continuación, permiten analizar los perfiles longitudinales de cada uno de los sentidos a elevar con distancias y pendientes adecuadas.

Vista en planta

Ilustración 31 Vista en planta, Elevación calle 127; AutoCAD Civil 3D
Perfiles

Ilustración 32 Vista perfil Oeste - Este, Elevación calle 127; AutoCAD Civil 3D

Ilustración 33 Vista perfil Este - Oeste, Elevación calle 127; AutoCAD Civil 3D
Vistas en 3D de la intersección propuesta,

Ilustración 34 Vista 3D con Object Viwer, Elevación calle 127; AutoCAD Civil 3D

Ilustración 35 Vista en planta con Object Viwer, Elevación calle 127; AutoCAD Civil 3D
5.2 Segunda Propuesta: Elevación Avenida Suba

Esta propuesta consiste en eliminar la semaforización de la intersección de la Avenida Suba con Calle 127, por medio de la elevación de cuatro carriles correspondientes al sentido Norte-Sur del tramo mencionado, mientras los carriles de la Calle 127 permanecen a nivel junto a sus conectantes y teniendo en cuenta los pasos peatonales necesarios y un puente peatonal.

La siguiente imagen, corresponde a la geometría planteada, junto con los ejes y corredores que el programa anteriormente indicado, permite proponer. Y las imágenes a continuación, permiten analizar los perfiles longitudinales de cada uno de los sentidos a elevar con distancias y pendientes adecuadas, y las vistas en 3D de la intersección propuesta.
Cada sentido cuenta con 4 carriles a nivel, que permiten el paso de peatones a los diferentes lugares de interés a los alrededores junto con un puente peatonal, igualmente para los conductores que deseen tomar vías alternas.

Vista en planta

![Ilustración 37 Vista en planta, Elevación Avenida Suba; AutoCAD Civil 3D](image)

Perfiles

![Ilustración 38 Vista perfil Norte - Sur, Elevación Avenida Suba; AutoCAD Civil 3D](image)
Vistas en 3D de la intersección propuesta.

Ilustración 39 Vista perfil Sur - Norte, Elevación Avenida Suba; AutoCAD Civil 3D

Ilustración 40 Vista 3D con Object Viewer, Elevación Avenida Suba; AutoCAD Civil 3D
5.3 Tercera Propuesta: Deprimido de Avenida Suba

Esta propuesta consiste en eliminar la semaforización de la intersección de la Avenida Suba con Calle 127, por medio de un deprimido de cuatro carriles correspondientes al sentido
Norte-Sur del tramo mencionado, mientras los carriles de la Calle 127 permanecen a nivel, lo anterior requerirá la ampliación de las dimensiones de la geometría actual y el traslado de la estación de Transmilenio unos metros hacia el norte.

Cada sentido cuenta con conectantes a nivel, que permiten el paso de peatones a los diferentes lugares de interés a los alrededores junto con un puente peatonal sobre la Avenida Suba, igualmente para los conductores que deseen tomar vías alternas.

La siguiente imagen, corresponde a la geometría planteada, junto con los ejes y corredores que el programa anteriormente indicado, permite proponer. Y las imágenes a continuación, permiten analizar los perfiles longitudinales de cada uno de los sentidos a elevar con distancias y pendientes adecuadas, y las vistas en 3D de la intersección propuesta.

Vista en planta

![Ilustración 43 Vista en planta, Deprimido Avenida Suba; AutoCAD Civil 3D](image-url)
Perfiles

Ilustración 44 Vista perfil Norte - Sur, Deprimido Avenida Suba; AutoCAD Civil 3D

Ilustración 45 Vista perfil Sur - Norte, Deprimido Avenida Suba; AutoCAD Civil 3D
Vistas en 3D de la intersección propuesta.

Ilustración 46 Vista 3D con Object Viwer, Deprimido Avenida Suba; AutoCAD Civil 3D

Ilustración 47 Vista en planta con Object Viwer, Deprimido Avenida Suba; AutoCAD Civil 3D
Ilustración 48 Vista en 3D, Deprimido Avenida Suba; InfraWorks
CAPÍTULO 6

ANÁLISIS DE ALTERNATIVAS EXPUESTAS

Por medio del proceso mencionado anteriormente y aplicado a cada una de las propuestas de intersecciones a desnivel, fue posible evidenciar que todas las anteriores cumplen con los aspectos de diseño geométrico exigidos para el tipo de intersección en cuestión, en la ciudad de Bogotá. Lo antepuesto permitió que la elección fuera más allá de las exigencias geométricas de un diseño y admita una postura en la que también prime la armonía y el equilibrio del ambiente, evitando alterarlo con el aumento de la contaminación visual del área.

Teniendo en cuenta lo anterior, se eligió, como mejor propuesta y proyecto a llevar a cabo para cumplir los objetivos planteados, la alternativa que expone un deprimido de la Avenida Suba en la zona de intersección mencionada, junto a pasos peatonales y conexiones de las vías a nivel, zonas verdes (separadores e isletas), sistema de drenaje adecuado para evitar inundaciones en la zona deprimida y el aumento de un carril para el sentido Oriente-Occidente (Calle 127).

Descartando las demás alternativas así:

- Elevación de la Calle 127: Debido a que la distancia necesaria para efectuar la pendiente del puente es geométricamente suficiente, pero insuficiente para cumplir con la no alteración visual del área a tratar en uno de los carriles.
- Elevación de la Avenida Suba: Debido a que la elevación de una vía siempre va a generar molestias visuales para las personas que habitan las edificaciones colindantes y que transitan por el área en cuestión.
CONCLUSIONES

Las vías de la Avenida Suba y de la Calle 127 han evolucionado y se han expandido con el pasar de los años, respondiendo a la necesidad de crecimiento y civilización de la sociedad, por esto se hace necesario la constante mejora de la geometría vial.

El diseño óptimo es el que cuenta con las distancias necesarias para llevarlo a cabo, genera una contaminación visual mínima y tenga en cuenta todos los movimientos tanto de conductores como de peatones.

Por lo mencionado anteriormente, el deprimido de la Avenida Suba es el diseño elegido, debido a que cuenta con las distancias necesarias para proyectar una pendiente (6%) y un galibo adecuado (7 m) y adicionalmente es la propuesta que menos afecta el equilibrio y armonía del lugar.

El diseño elegido cuenta con 4 carriles para el flujo vehicular de oriente a occidente, igualmente para occidente a oriente y un puente que comunica la ciudad de Norte a Sur y en el sentido Sur Norte, también con 4 carriles para cada sentido. Adicionalmente proporciona espacios a nivel que permiten el tránsito de peatones y cruces para mayor conexión entre las vías colindantes al servicio de los conductores, como accesos a zonas residenciales, centros comerciales y demás establecimientos importantes para la población.

Para terminar, se concluye que con el proyecto elegido se cumple el objetivo trazado inicialmente, ya que al eliminar la intersección semaforizada en estudio, se mantiene un flujo en mejores condiciones que con la geometría actual, evitando congestiones y embotellamientos, se actualiza la infraestructura vial y adicionalmente se incluye cierta mejora en los tiempos de servicio de Transmilenio.
RECOMENDACIONES

El deprimido de la Avenida Suba debe ir acompañado por:

- Un sistema de drenaje para evitar inundaciones
- Pasos a nivel para el tránsito de peatones y junto a estos un puente peatonal sobre la Avenida Suba.
- Actualización y reacondicionamiento de las redes de servicio pertenecientes a la intersección.
- Nuevas propuestas a desnivel, para las demás intersecciones de la Avenida Suba y de la Calle 127, para así eliminar situaciones de congestionamiento y embotellamiento sobre estas vías principales.
BIBLIOGRAFÍA

andemos.org. (s.f.). Asociación Colombiana de Vehículos Automotores. Obtenido de Andemo: www.andemos.org

dane.gov.co. (s.f.). Departamento Administrativo Nacional de Estadística. Obtenido de DANE: www.dane.gov.co

idu.gov.co. (s.f.). Instituto de Desarrollo Urbano. Obtenido de Instituto de Desarrollo Urbano: www.idu.gov.co

mintransporte.gov.co. (s.f.). Ministerio de Transporte de Colombia. Obtenido de Mintransporte: www.mintransporte.gov.co

oab.ambientebogota.gov.co. (s.f.). Observatorio Ambiental de Bogotá. Obtenido de Observatorio Ambiental de Bogotá: oab.ambientebogota.gov.co

observatorio.desarrolloeconomico.gov.co. (s.f.). Observatorio de Desarrollo Económico de Bogotá. Obtenido de Observatorio de Desarrollo Económico de Bogotá: observatorio.desarrolloeconomico.gov.co