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ABSTRACT 

 

Seasonally dry tropical forest (SDTF) is one of the most threatened ecosystems worldwide. With 

the aim to provide new insights into the conservation of this ecosystem, I characterized plant 

diversity (alpha and beta) and phylogenetic structure of SDTF of fifteen permanent plots located 

across the best-conserved remnants of this ecosystem in Colombia. I built a megatree phylogeny 

for 373 species an assessed the evolutionary distinctiveness of the communities as well as the 

phylogenetic diversity with two metrics mean pairwise distance (MPD) and mean nearest taxon 

distance (MNTD) that quantify basal and terminal evolutionary history of communities. 

Phylogenetic alpha diversity was found to be coupled with species diversity; however, species 

with high evolutionary distinctiveness where unevenly distributed. Further, I tested if patterns of 

phylogenetic diversity, could be explained by eleven environmental variables but none of these 

were good predictors of phylogenetic alpha diversity. Instead, for beta taxonomic and 

phylogenetic diversity four environmental variables explained up to 11% of species turnover. 

Phylogenetic structure was assessed with Net Relatedness Index (NRI) and the Nearest Taxon 

Index (NTI), finding that 5 plots presents phylogenetic clustering meaning that coexisting species 

are more closely related than expected by chance; on the other hand, 9 plots showed a random 

assembly of species. The observed patterns were not associated with a particular region 

suggesting that despite the current fragmentation of SDTF in Colombia, lineages are not 

restricted to particular regions. Finally, to test if the resolution of the phylogeny employed could 

bias the observed patterns of phylogenetic structure, for a subset of six plots I generated a well-

resolved phylogeny based on DNA sequences of the plastid region rbcLa and compared the 

results obtained with the megatree. There were no differences for patterns of MPD, however for 

MNTD the rbcLa phylogeny elucidated more structure indicating that well-resolved phylogenies 

are important when employing terminal measures of phylogenetic diversity. In summary, 

phylogenetic structure does not reflect the extreme environmental heterogeneity of SDTF. 
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However, the results suggest that deterministic and neutral processes act together in the 

processes of community assembly, highlighting the need to integrate more areas covered by 

SDTF to better understand the ecological processes acting in the community assembly.   
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INTRODUCTION 

 

Understanding the processes that allow the coexistence of many species in a community is still 

a main target in ecology. In that sense, characterizing the evolutionary relationships of co-

occurring species may shed light into their assembly process (Webb 2000, Cavender-Bares et al. 

2009). Indeed, once dispersal limitation is overcoming, community assembly results both from 

the filtering of species by abiotic and biotic factors leading to particular patterns of phylogenetic 

structure (Losos 1996, Webb et al. 2002, Chase 2003, Kraft et al. 2007, Cavender-Bares et al. 2009, 

Mittelbach and Schemske 2015). Commonly, community diversity and structure has been 

characterized from a taxonomic perspective (species number and their relative abundance) . 

However, assessing phylogenetic diversity allows to better understand the uniqueness of 

evolutionary lineages in a community and the ecological process dominating community 

assemblage (Forest et al. 2006, Faith 1992). A considerable number of studies have addressed 

the phylogenetic diversity and structure of temperate and tropical rain forests (Webb 2000, 

Cavender-Bares et al. 2004, Kembel and Hubbell 2006). However, only few studies have tackled 

the phylogenetic structure of tropical dry forests (Swenson and Enquist 2009, Freiro-Moro et al. 

2015). In this study I sought to characterize patterns of species and phylogenetic diversity and 

structure in remnants of tropical dry forest in Colombia to understand community assembly and 

to provide insights for their future planning. 

 

The seasonally dry tropical forest (SDTF) is characterized by a dry season of at least 3 months 

with precipitation below than 100 mm and evapotranspiration above 250 mm. Owing to this 

hydric deficit, species that live in this ecosystem have particular physiological and morphological 

adaptations that allow their survival and reproduction (Pennington et al. 2000, Portillo-Quintero 

et al. 2010, Sánchez-Azofeifa et al. 2005, Pizano et al. 2014). Globally, SDTF currently occupies an 

area close to 1,048,700 Km2 (Miles et al. 2006, Portillo-Quintero and Sánchez-Azofeifa 2010) and 
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is distributed in south Sub-Saharan Africa (including Madagascar) (13.1%), south of Asia (3.8%) 

and north Australia (26.4%) (Pennington et al. 2000, FAO 2001, Reinaldo et al. 2011, Sunderland 

et al. 2015). In Mesoamerica, it has an extension of 12.5%, located in Mexico along the Pacific 

coast and Guanacaste in the north of Costa Rica. Nevertheless, it is in South America where SDTF 

reaches its largest extension with at least 54.2% (Figure 1) (Pennington et al. 2000, Miles et al. 

2006, Reinaldo et al. 2011). Although SDTF currently has a highly fragmented distribution, it is 

believed that during the last glacial period (18.000 – 12.000 BP) in South America it reached its 

mayor extension, along the west of Brazil, Argentina and Paraguay and in more disjunct areas 

through the inter-Andean valleys of Peru, Bolivia, Ecuador and Colombia (Barneby 1991, Prado 

and Gibbs 1993, Barneby and Grimes 1996, Pennington et al. 2000). 

 

 

Figure 1. Global distribution of tropical dry forest in the year 2000, modified from Miles et al. 

(2006). 

 

Globally, SDTF is considered the most threatened ecosystem with less than 10% of its original 

extension remaining in many countries (Banda et al. 2016, Portillo-Quintero and Sánchez-

Azofeifa 2010, Sunderland et al. 2015). Particularly in Colombia, only 8% of the original extension 

of eight million hectares remains (Pizano and García 2014) (Figure 2). A recent study on species 

turnover across the neotropical dry forests identified 12 floristic groups highlighting the 

importance of considering such differences for conservation (Banda et al. 2016). In Colombia, 

the authors documented two floristic groups; the first one covers Central America and the north 
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of South America, and the second corresponds to the inter-Andean valleys. However, in a specific 

study for Colombia, Pizano et al. (2014) identified three floristic groups corresponding to the 

Caribbean coast, the inter-Andean valleys and the plains of Orinoquía. These studies are the first 

steps to understand the biogeographic history of the SDTF in Colombia which remains elusive. 

 

 

Figure 2. Current distribution of tropical dry forest in Colombia (modified from Pizano and 

García 2014) 
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Characterizing the evolutionary composition and turnover of SDTF communities should allow for 

a better understanding of the historical link of current floristic nodes and the dominant 

ecological processes that determine community assembly in this ecosystem. Community 

assembly results from the dispersion of species from a regional pool that may further be filtered 

through abiotic conditions and biotic interactions determining colonization and coexistence in 

a local site (Webb 2000, Kraft et al. 2007). Assuming that species more closely related in their 

evolutionary history are more ecologically similar, two major patterns of phylogenetic 

community structure have been described. For instance, under abiotic pressures, it is expected 

that species sharing similar ecological traits will coexist leading to a pattern of evolutionary 

clustering (Webb 2000, Cavender-Bares et al. 2004, 2006). On the other hand, when resource 

constraints increase competition among closely related species, their coexistence is limited 

(MacArthur and Levins 1967) leading to a community composed of distantly related species or 

phylogenetically overdispersed (Webb et al. 2002, Chase 2003, Cavender-Bares et al. 2009). 

However, another scenario supposes that species are ecologically equivalent and their presence 

and abundance in a community will be conditioned solely by their dispersion capacity and 

abundance in the regional pool (Hubbell 2001). This last scenario considers that local 

communities result from a random sampling from the regional pool. 

  

Given the patchy distribution of SDTF, it has been argued that this biome is dispersal limited 

(Pennington 2006). Besides, given the differences on environmental and edaphic conditions 

throughout this ecosystem, (González-M et al. 2018) one could expect to find phylogenetic 

clustering in local communities where their assemblage would be composed of closely related 

species that share their tolerance to particular environmental conditions. The main objective of 

this study was to characterize the phylogenetic diversity and structure of fifteen permanent plots 

of SDTF present in five geographic regions of Colombia to understand the processes underlying 

their assemblage, in order to provide insights for dry forest conservation. 
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The increasing availability of DNA sequences and molecular phylogenies has allowed for the 

incorporation of the phylogenetic perspective in community ecology studies. Still, the majority 

of these studies assess phylogenetic metrics from “megatree” phylogenies that resolve up to the 

family or genera level a resolution that may bias the detection of structure patterns (Webb & 

Donoghue 2005, Gonzalez et al. 2010, Coronado et al. 2014). This limitation is stronger in 

neotropical rich flora like in Colombia, where less than 5% of the species have any genetic 

information available (González et al. 2014). Therefore, with the aim of testing if phylogenetic 

resolution may influence structure patterns, I built a well-resolved phylogeny with DNA 

sequences for a subset of six of the studied plots and compared the results with a megatree 

phylogeny. 
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METHODS 

 

Study sites and sampling collection 

This study was carried out in fifteen permanent plots distributed across five geographic regions 

in Colombia where the seasonally dry tropical forest (SDTF) is found (Table 1). The plots are one 

hectare each and were established between 2013 and 2015 by the "Alexander von Humboldt 

Biological Resources Research Institute" (IAvH) through the tropical dry forest network (Figure 

3). 

 

Table 1. Plots included in this study including region, species richness, and the number of trees 

with dbh>5 cm (density). 

Plot names Region Species richness Density 

Colorados 

Caribbean 

73 1265 

Macuira 32 809 

Matitas 27 1381 

Plato 32 887 

Tayrona 42 1062 

Cotove 

Cauca Valley 

19 694 

Tamesis 15 221 

Vinculo 43 1747 

Tuparro Llanos 62 551 

Caparrapi 

Magdalena Valley 

62 67 

Cardonal loma 42 2008 

Cardonal plana 44 1341 

Jabiru 35 1256 

Tambor 68 567 

Taminango Patia Valley 4 623 
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Figure 3. Geographical location of plots included in this study. Plots are colored according to 

the region where they are located as follows: Caribbean in red, Magdalena in orange, Cauca in 

yellow, Llanos in green and Patia in grey. The triangle plots were used for the construction of a 

phylogeny with molecular sequences. 

 

In each plot all vascular plants with diameter at breast height (dbh) ≥ 5 cm were marked and 

identified by botanical specialists in the herbarium (Figure 4). Overall, for the 15 plots, 373 

morphospecies were recorded, from these 67% were identified to species level and 33% to genus 
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level. For further DNA analysis, small pieces of leaves of all species were collected, that were 

dried and stored in silica gel (Gonzalez and Quintero 2017) (Figure 5). 

 

 

Figure 4. Establishment of permanent plots between 2013 and 2014 by the IAvH. 

 

 

Figure 5. (a) Marking and census of all plants with DBH ≥ 5 cm. (b) Collection and storage of 

leaves for genetic analyses. 
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Phylogenetic trees  

 

I generated two phylogenetic hypotheses using the phylomatic platform 

(http://phylodiversity.net/phylomatic/) (Webb et al. 2008). The first phylogeny comprises the 

total species present in the fifteen plots and the second phylogeny comprises the species present 

in a subset of six plots (Cotove, Matitas, Jabiru, Vinculo, Taminango and Tuparro). The base 

megatree used was R20120829 that is based on the APG III (Angiosperm Phylogeny Group 2009) 

phylogenetic classification of flowering plants from which I pruned 373 species as the regional 

pool of the 15 plots and 165 species as the regional pool of the 6 plots (Webb and Donoghue, 

2005). Branch lengths for both phylogenetic trees were calculated with the BLADJ algorithm 

available in Phylocom v.4.2 (Webb et al. 2008) and based on 30 nodes ages from Magallón et al. 

(2015). BLADJ fixes dates of the given nodes to the megatree uniformly between known nodes 

on the phylogeny getting a phylogeny with branches calibrated in millions of years (Webb et al 

2004).  

 

A third phylogeny was comprising for the same subset of 165 species present in the subset of 

six plots (Cotove, Matitas, Jabiru, Vinculo, Taminango and Tuparro). That were constructed with 

molecular sequences, as follow: 

 

DNA extraction, PCR amplification and sequencing 

Around 25 mg of leaf tissue was used for DNA extraction; tissue was homogenized with liquid 

nitrogen. DNA was extracted following Ivannova (2008) protocol modifying the lysis buffer with 

CTAB 1% + PVP buffer and carrying incubation for one hour at 65°C. For the amplification of the 

first portion of the plastid rbcLa gene the primers: 1f: 5’-ATGTCACCACAAACAGAAAC-3’; r724: 

5’-TCGCATATGTACCTGCAGTAGC-3’ were used. PCR mix contained 0,2 ml GoTaqH 51 U/ml 

(Promega), 2 µl of 0X buffer, 1 µl of 10 mM for each primer, 0,4 µl of dNTP 10 mM, 2 µl of ADN 
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and H2O for a final volume of 20 µl. The PCR products were examined at 1,5% of agarose gel 

and 1% of TBE, and then were visualized using an ultraviolet trans-illuminator. The PCR program 

was 94 °C for 1 min, followed by 5 cycles of 30 s at 94 °C, 40 s at 50 °C and 2 min at 72 °C, 

continuing with 35 cycles of 30 s at 94 °C, 40 s at 54 °C, 2 min at 72 °C, with a final step of 5 min 

at 72 °C.  

 

I obtained rbcLa sequences for 92 species that were deposited on the Barcode of Life Data 

System platform, in the project "Tropical Dry Forest Colombia" (BSTIH) and that correspond to 

the first's sequences for these species in global databases. The remaining 73 sequences were 

downloaded from GenBank (Table S1). Samples without genetic information at species level were 

replaced by a congener reported to be found in other tropical dry forests 

(http://www.dryflor.info/). Sequences obtained were assembled and edited in Geneious9, then 

aligned using MUSCLE of MEGA 7 packages (Kumar et al. 2016). Finally, the alignment was finally 

manually adjusted. 

 

Phylogenetic analyses were conducted with Bayesian methods, implementing a GTR model 

(General Time Reversible) according to the results obtained from jmodeltest-2.1.10 (Posada 

2010). Dating analyses were conducted with a relaxed molecular clock and the Yule model for 

calibration, in the software BEAST v2.0 (Drummond and Bouckaert 2014). I included a sequence 

of Amborella trichopoda (Amborellaceae) as the outgroup. For the calibration, 30 points were 

used from Magallón (2015) with a normal distribution (Ho 2007, Sauquet 2013), 30 million 

generations were run and 50% of the initial trees sampled in each run were discarded as burn-

in. The results of the BEAST analyses were evaluated in TRACER v1.6 (Rambaut et al., 2014). In 

which was verified that the effective sample sizes of estimated parameters were greater than 

100. Finally, the TreeAnnotator v2.4.3 software (Drummond and Bouckaert 2014) was used to 

generate a consensus tree. 

http://www.dryflor.info/
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DIVERSITY METRICS 

 

1. Taxonomic and phylogenetic alpha diversity 

Taxonomic alpha diversity was calculated with a Shannon’s diversity (H’) index that 

incorporates species abundance (Shannon 1948). 

Hsb =  ∑ pi log pi

𝑠

𝑖=1

 

 

Were S, is the number of species in the assemblage and pi is the relative abundance of the ith 

species. 

 

The indices for assessing phylogenetic alpha diversity were the mean pairwise distance (MPD) 

and the mean nearest taxon distance (MNTD), both accounting for species abundances. MPD 

calculates the mean phylogenetic distance between all possible pairwise combinations of 

individuals of a local assemblage, and it is considered a basal measure of relatedness. MNTD 

quantifies the mean phylogenetic distance for each individual to its nearest relative in a plot; is 

more sensitive to variations towards the tips of the topology so it is considered a terminal 

relatedness measure (Webb 2002, Webb et al. 2008, Kembel et al. 2010, Tucker et al. 2016). 

 

𝑀𝑃𝐷 =  ∑ ∑ 𝑑𝑖𝑗 𝑃𝑖 𝑃𝑗

𝑗𝑖

 

 And 

𝑀𝑁𝑇𝐷 =  ∑[𝑑𝑖 𝑚𝑖𝑛 ∗ 𝑃𝑖]

𝑠

𝑖=1

 

Where:  

• dij = Phylogenetic distance between two species i and j. 

• di min = Distance of a given specie (i) to its nearest neighbor relative in the assemblage. 
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• pi/pj = Probability to draw an individual of specie i from the assemblage (measured as a 

relative abundance). 

• S = Species richness. 

 

A Person correlation test with a confidence interval of 95% was performed to evaluate the 

correlation of phylogenetic diversity measurements (MPD and MNTD) with taxonomic diversity 

(Shannon index). To assess the relationship between environmental variables and phylogenetic 

diversity, (MPD and MNTD) I ran a linear model using the following variables: mean annual 

temperature (MAT, ºC), total annual precipitation (AP, mm), potential evapotranspiration (PET, 

mm) determined as the sum of monthly potential evapotranspiration using the Thornthwaite 

equation (Thornthwaite 1948), total precipitation during the three driest months (<100 

mm·month-1) (TPdriest, mm), total of annual rainy days (Ard, no.), isothermality (Isoth, %) 

analyzed as the large day-to-night temperatures oscillations relative to annual oscillations (Bio3, 

O’Donnell and Ignizio 2012), aridity index (Aridity) calculated as the TAP/PET ratio (Zomer et al. 

2008), the average number of rain days monthly (M.rainyd); the average number of rain days in 

a year (A.rainyd), number of dry months (Drymonths) and mean rainfall of the driest month 

(P.drymonth). These environmental variables were determined using the National Climatic 

Source, which include 2.046 weather stations in Colombia with monthly data of mean 

temperature, total precipitation and rainy days (~90 m spatial resolution, 

http://institucional.ideam.gov.co/jsp/1769) (González-M et al. 2018).  

 

The possible collinearity between the selected eleven variables was verified using the variance 

inflation factor (VIF) for linear models, which measures the proportion by which the variation of 

a regression coefficient is inflated in presence of other explanatory variables. Variables with a VIF 

> 5 were eliminated. To identify which of the variables selected in the previous step were better 

http://institucional.ideam.gov.co/jsp/1769
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predictors for phylogenetic diversity, I applied the Akaike information criterion (AIC) and chose 

those with lowest values. 

 

Evolutionary distinctiveness (ED)  

This index represents the amount of evolutionary history kept by each lineage (Redding and 

Mooers 2006). To calculate this index, each branch is divided in segments (between nodes or to 

the root) called EDGE. To each EDGE an ED score is assigned which represents the timespan it 

covers (in millions of years) divided by the number of species at the end of the subtree it forms. 

Finally, the ED for each species corresponds to the sum of EDGES values for all branches from 

which the species descend (Pavoine et al. 2005, Redding et al. 2008). 

 

𝐸𝐷(𝑇,𝑖) = ∑ (𝜆𝑒 .
1

𝑆𝑒

)

 

𝑒∈𝑞(𝑇,𝑖,𝑟) 

 

 

Where e is a branch of length λ in the set S(T,i,r) connecting species i to the root r and Se is the 

number of species that descend from edge e. 

 

2. Taxonomic and phylogenetic beta diversity 

Beta diversity represents the turnover of species among assemblages and quantifies the 

similarity or dissimilarity between two communities, (Whittaker 1960, Jaccard 1912, Simpson 

1943) whereas phylogenetic beta diversity assesses the turnover of phylogenetic composition of 

assemblages, being a measurement related to evolutionary history (Graham and Fine 2008). 

 

Taxonomic beta diversity (TBD) and phylogenetic beta diversity (PBD) between all pairwise 

communities was calculated with the indices Sorensen and PhyloSor respectively (Bryant et al. 

2008), defined as: 
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𝑆𝑜𝑟𝑒𝑛𝑠𝑒𝑛 
𝑖𝑗=

𝑆𝑖𝑗

(𝑆𝑖 + 𝑆𝑗)
1
2

 

And 

𝑃ℎ𝑦𝑙𝑜𝑠𝑜𝑟
 𝑖𝑗= 

𝐵𝐿𝑖𝑗

(𝐵𝐿𝑖+ 𝐵𝐿𝑗)
1
2

 

 

Where  

• Sij = Number of taxa common to both communities (i and j). 

• Si and Sj = Number of exclusive species in each community (i and j). 

• BLij = Total length of branch lengths shared between communities i and j. 

• BLi and BLj = Total branch lengths exclusive for each community i and j. 

 

These indices ranged from 0 to 1. Values close to 1 indicate that two communities are completely 

different with regard to their taxonomic and phylogenetic composition; on the opposite, lower 

values (near 0), means that the two communities have the same set of species or evolutionary 

lineages. 

 

A cluster analysis (for Sorensen and PhyloSor indices) was performed with the algorithm UPGMA 

(Unweighted Pair Group Means Algorithm). Based on the distance matrices (Sorensen and 

Phylosor) the algorithm begins by grouping the plots and calculates the average distance 

between each group, generating a new distance matrix which is compared with the original 

distance matrix, then the process is repeated until it finds the closest distances to the original 

matrix. (Kreft and Jetz 2010, Moreno Saiz et al. 2012, Holt et al. 2013). 
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Generalized dissimilarity modeling 

 

Generalized dissimilarity model (gdm) is a nonlinear statistical approach, used to evaluate the 

contribution of the geographical distance and environmental variables to explain the species 

and lineages turnover among plots (Ferrier et al. 2004, 2007, Roseaur et al. 2013, Fitzpatrick et 

al. 2013). Different from the lineal models, such as Mantel test, the gdm has two principal 

advantages. First, it assumes a non-linearity in the measure of compositional dissimilarity and 

any gradient (the linear relation between the increasing of dissimilarity and the environmental 

or spatial scale). Second, it assumes that there is a different turnover rate in the entire range of 

each variable (Ferrier 2004, 2007). I used the eleven environmental variables (described above) 

as environmental predictors, and generated two gdm with Sorensen and PhyloSor dissimilarity 

between pairs, creating a site-by-site distance matrix (dissimilarity).Finally, the model was fitted, 

as described in Ferrier et al. (2007) in the R package “gdm” (Manion et al. 2017) available at 

https://www.rdocumentation.org/packages/gdm/versions/1.3.3. Then, the variables that were 

selected by the model were plotted. In the graph, the height of the curve represents the relative 

importance of each variable, while the amount of turnover is represented by the increase in the 

slope. 

https://www.rdocumentation.org/packages/gdm/versions/1.3.3
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PHYLOGENETIC COMMUNITY STRUCTURE 

 

Two metrics of phylogenetic community structure were calculated: the Net Relatedness Index 

(NRI) and the Nearest Taxon Index (NTI). These indices are based on a comparison of observed 

values of MPD and MNTD respectively, relative to a null model distribution under which species 

position in the phylogeny are randomized. Positive values mean that the taxa in a sample are 

less related than expected by the random model (phylogenetic overdispersed) and negative 

values suggest that species are more closely related than expected by chance (phylogenetic 

clustering) (Webb 2000, Cavender-Bares et al. 2004, 2006, Webb et al. 2008, Vamosi et al. 2009). 

The observed phylogenetic distances for each sample were compared to the distribution of 9999 

null communities. I used the "richness" null model, in which the abundances are assigned at 

random and the richness does not change within communities. The model assumes that the 

species of the regional species pool (all species present in the plots considered) are equally able 

to colonize any community (Gotelli 2000, Hardy 2008, Mouquet 2012, Miller et al. 2016). 

Phylogenetic structure indices were calculated using the R package “Picante” (Kembel et al. 2010) 

available at http://cran.at.r-project.org/web/packages/picante/. 

 

 

𝑁𝑅𝐼 =  
MPDobs −  MPDrnd

std. MPDrnd
 

And 

𝑁𝑇𝐼 =  
MNTDobs −  MNTDrnd

std. MNTDrnd
 

 

Where obs is the observed community, rnd is the random community and std is the standard 

deviation (Webb et al. 2002). 

 

http://cran.at.r-project.org/web/packages/picante/
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To determine if the phylogenetic structure metrics are affected by the resolution of the 

phylogeny employed, I compared the results of NRI and NTI obtained from the megatree and 

those with the phylogeny generated from DNA sequences of the plastid region rbcL-a, both for 

the plots of Tuparro, Matitas, Vinculo, Taminango, Cotova and Jabirú.  
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RESULTS 

 

DIVERSITY METRICS 

 

1. Taxonomic and phylogenetic alpha diversity 

 

Taxonomic diversity shows a significant positive correlation with MPD (r = 0.89, p = 8.402 e-06; 

Figure 6) and a significant negative correlation with MNTD (r = -0.62, p = 0.01; Figure 6). Given 

the low number of species in the Taminango plot (only 4 species), the correlation was run without 

this plot. For MPD the positive correlation was kept significant (r = 0.80, p = 0.0006), but for 

MNTD the correlation disappeared (r = -0.11, p = 0.70). 

 

 

Figure 6. Correlation between taxonomic diversity (Shannon index) and (a) mean pairwise 

distance (MPD) and (b) mean nearest taxon distance (MNTD). Points correspond to permanent 

plots; grey point represents the Taminango plot. 
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In general, there was no correspondence between the results of MPD and MNTD. The top five 

plots with high MPD values correspond to Cardonal plana (474 Ma), Tambor (471 Ma), Tuparro 

(447 Ma), Caparrapi (434 Ma) and Colorados (429 Ma) (Figure 7.a) whereas for MNTD were 

Taminango (517 Ma), Matitas (254 Ma), Tamesis (236 Ma), Cardonal plana (229 Ma) and Tuparro 

(189 Ma) (Figure 7.b). Remarkably, Taminango had the lowest value for MPD and the highest 

value for MNTD (33 Ma and 517 Ma, respectively). 

 

 

Figure 7. Bars represents the diversity index for each of the fifteen plots. (a) results for MPD, (b) 

results for MNTD and (c) results for Shannon index. Colors correspond to the region where each 

plot is located: Caribbean in brown, Magdalena in orange, Cauca in blue, Llanos in green and 

Patia in gray. 
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After performing the variance inflation factor the variables without collinearity were: MAT, 

Drymonths, Driests, Aridity, and A.rainyd. Then, with these five variables I ran the linear model 

for both metrics (MPD and MNTD), nevertheless none of the environmental variables fitted the 

model. 
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Evolutionary distinctiveness 

I found that the species with the highest evolutionary distinctiveness are distributed unevenly 

across the phylogeny (Figure 8). 

 

Figure 8. Evolutionary values (ED) distribution for each species. Blue edges represent species 

with highest values of ED whereas red represents species with lowest values of ED. 
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The fifteen species with the highest ED values are shown in Table 2. Colorados and Tuparro were 

the plots with more species out of these fifteen, each one with five, followed by Plato which had 

three. Of these fifteen species, Agonandra brasiliensis, Bulnesia arborea, Picramnia latifolia, 

Securidaca sp, Bentamantha sp and Bauhinia petiolata are typical of SDTF. Other species such as 

Securidaca sp, Verbesina sp, Picramnia latifolia and Heisteria acuminata (among others) are more 

characteristic of humid environments. 

 

Table 2. The top 15 species values for evolutionary distinctiveness. 

Species name ED (millions of year) 

Piper sp6 245 

Heisteria acuminata 229 

Agonandra brasiliensis 229 

Bulnesia arborea 228 

Discophora sp 222 

Terminalia amazonia 203 

Chromolaena perglabra 200 

Verbesina sp 200 

Picramnia latifolia 197 

Securidaca sp 194 

Clathrotropis macrocarpa 186 

Bentamantha sp 186 

Bauhinia petiolata 186 

Alibertia sp 174 

Amaioua corymbosa 174 
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2. Taxonomic and phylogenetic beta diversity 

 

The UPGMA clustering based on the similarity of species composition and lineages groups most 

of the plots in the study to their biogeographic regions (Figure 9). Indeed, given that five major 

regions were represented in the study (Caribbean, Orinoquia, Patia, Magdalena and Cauca), a 

cut-off five group was established to test what groups were recovered. In terms of taxonomic 

distances, the Tamesis plot was distant from other plots of the Cauca, while the remaining Cauca 

and Magdalena plots were grouped together. For the phylogenetic distances, Tamesis remained 

as a single group but in this case, the Magdalena and Caribbean plots were grouped together. 

Both dendrograms (TBD and PBD) show more similarity of Colorados with the Magdalena than 

with other plots of the Caribbean region and recover Tuparro and Taminango as independent 

groups. 
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a.  

 

b.  

 

Figure 9 Dendrogram from UPGMA clustering calculated from Sorensen (a) and PhyloSor (b) 

distance matrices. The fifteen plots are colored according to their geographic region: Patia is in 

orange, Cauca is in blue, Caribbean is in red, Llanos is in green and Magdalena is in brown. 
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Generalized Dissimilarity Model 

Of the 11 environmental variables tested as predictors of the phylobetadiversity four variables 

best fitted the model: 1. annual rainy/day (A.rainyd), 2. Aridity  (Aridity), 3. total annual of 

precipitation (AP) and 4. mean annual temperature (MAT) (Figure 10). The relative importance 

for each variable were determined according to the height of the curve. The gdm model 

explained the 20.68% of turnover in community composition (TBD).  

a) b)    

       

c)           d) 

       

Figure 10. Environmental variables (a-d) selected as the best predictors for the Taxonomic 

Biodiversity Turnover (TBD). The total amount of turnover associated with each variable (holding 

all other variables constant) is represented by the maximum height reached by each curve. The 

shape of the curve indicates how the rate of turnover varies along the environmental gradient. 
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Four environmental variables and geographical distance explained 11.63% of PBD with the gdm.  

Those variables were in order of importance: month rainy/day (M.rainyd), annual rainy/day 

(A.rainyd), isothermality (Isotherm) and the driest month (P.drymonth) (Figure 11). Although both 

models share one of the four variables like best predictor, taking into account the percentages 

of variance explained for both models, PBD was less well predicted by the environment than 

TBD. 

a)        b) 

           

c)         d) 

           

Figure 11. Environmental variables (a-d) selected as the best predictors for the phylogenetic 

dissimilarity of each site pair (PBD). The shape of the curve indicates how the rate of turnover 

varies along each environmental gradient.  
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The geographical distance was used in the adjustment of the model in both cases, but for TBD 

this variable had a greater influence (Figure 12). 

a.         b.  

     

 

Figure 12. Fitted geographical variable of observed (a) taxonomic and (b) phylogenetic turnover 

for a Generalized Dissimilarity Model. The height reached by each function provides an indication 

of the total amount of turnover associated with this variable, and the slope indicates the variation 

of the rate of turnover along the geographical gradient. 
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PHYLOGENETIC COMMUNITY STRUCTURE 

 

Out of the fifteen plots evaluated, five had significantly negative NRI values (Figure 13.a, p-value 

< 0.05), indicating clustering, and one plot (Cardonal plana) presented significant positive value 

indicating overdispersion (p-value < 0.05). The remaining nine plots display a structure not 

different from a random distribution. Figure 13.b show the values for NTI. Out of the fifteen plots: 

Macuira, Tayrona, Caparrapi and Cardonal loma showed phylogenetic clustering (p-value < 0.05) 

whereas the remaining plots did not differ significantly from the expectation from a random 

assemblage. The plots Tayrona, Caparrapi and Cardonal loma exhibit a cluster pattern for both 

indices, NRI and NTI. 

 

a. 

 

b.  

 

Figure 13. Values for NRI (a) and NTI (b) are displayed and those significantly different from 

random are indicated with red dots. Red dots above the dashed line indicate overdispersion 

(p>0.95) whereas red dots below the dashed line indicate clustering (p<0.05). Black dots 

correspond to plots with a phylogenetic structure not different from random. 
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When comparing phylogenetic structure patterns, for a subset of six plots, based on the rbcLa 

phylogeny (Figure S1) and the megatree phylogeny (Figure S2), I found a high correlation for 

NRI index while for NTI the correlation was not significant (Figure S3). 

 

For NTI values (Figure 14) the Tuparro plot appears to be clustered based on the rbcLa phylogeny 

but not different from random based on the megatree phylogeny. On the other hand, for NRI 

consistently Cotove showed a cluster pattern while the other plots present a random pattern. 

Nonetheless, for NTI, Tuparro presented a significant cluster pattern based on the rbcLa 

phylogeny but a random pattern based on the megatree. 

 

   rbcLa       Megatree 

a.        b.  

 

c.       d.    

 

Figure 14. Net Relatedness Index (NRI) and Nearest Taxon Index (NTI) for a subset of six plots. 

Panels (a) and (c) correspond to the indices calculated with the rbcLa phylogeny and (b) and (d), 

to those calculated with the megatree. Red dots above the dashed indicate overdispersion (p-

value < 0.05) and below the dashed line indicate clustering (p-value < 0.05). 
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DISCUSSION 

 

The recognized threatened status of SDTF has driven recent research on the biological diversity 

associated to this ecosystem, although most of the research has focused mainly on taxonomic 

diversity. This study is among the first to characterize phylogenetic diversity and structure 

throughout the distribution of STDF in Colombia (Linares et al. 2011, Dryflor 2016, Pizano et al. 

2016, González et al. 2014).  Our results show a clear correlation between taxonomic diversity 

and phylogenetic diversity measured as MPD. This strong and positive correlation has been 

described previously in a mountain ecosystem in South Korea (Chun and Lee 2018). However, 

this result contrast with other studies showing that phylogenetic and taxonomic diversity is 

decoupled in plant communities (Forest et al. 2007, Chave et al. 2007). Interestingly, taxonomic 

diversity appeared to be negatively correlated with phylogenetic diversity measured as MNTD. 

This could be explained by the fact that MNTD is a terminal measure on the phylogeny and with 

increasing diversity and increasing unevenness in species abundances, MNTD tends to be lower. 

Our results are similar to those found by Coronado et al. (2015) in the Amazonian forest, where 

they found a negative correlation between species richness and MNTD. It is important to recall 

that the measures used in this study were weighted according to species abundance, which can 

result in different patterns when compared to presence/absence assessments (Cadotte et al. 

2010, Gonzalez et al. 2010, Tucker et al. 2016).  

 

Considering that SDTF is widely characterized by a marked seasonality and rainfall regime 

(Pennington et al. 2000, 2009, Portillo-Quintero and Sánchez-Azofeifa 2010), I tested whether 

phylogenetic diversity could be explained by eleven environmental variables but did not find a 

relationship between them. However, other studies have found that environmental variables are 

related to phylogenetic diversity patterns such as the study of Chun and Lee (2018) in a mountain 

ecosystem in South Korea. My results differ from the study of González et al. (2014) who found 
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a relationship between decreasing phylogenetic diversity with increasing temperature in 

different forests in Colombia; nonetheless their study included plant communities from different 

ecosystems and therefore their regional pool was wider and more heterogeneous. 

 

Regarding Beta diversity, I found that environmental variables and geographic distance explain 

up to 20.68% of species turnover and 11.63% of phylogenetic Beta diversity. Interestingly, the 

environmental variables that best fit the models for TBD and PDB are not the same. In particular, 

TBD was partially explained by annual rainy/day (A.rainyd), Aridity (Aridity), total annual of 

precipitation (AP) and mean annual temperature (MAT); whereas PBD is best explained by  month 

rainy/day (M.rainyd), annual rainy/day (A.rainyd), isothermality (Isotherm) and the driest month 

(P.drymonth).  On the other hand, the results, are congruent with recent findings by González-

M et al. (2018), who evaluated species turnover in 6 regions of SDTF in Colombia and showed 

that environmental variables explain up to 13% of species turnover, highlighting the large 

proportion of variance that remains to be explained. Species and phylogenetic beta diversity 

(TBD and PBD) were also related to geographic distances; still, this relationship is stronger in TBD 

(figure 7). Our results are similar to the study by González et al. (2014), who found a weak 

relationship between spatial distance and phylogenetic turnover.  

 

Based on cluster analyses Tamesis and Tuparro presented the greater species and phylogenetic 

turnover when compared to other plots; they also correspond to areas with the highest rates of 

precipitation (González-M et al. 2018, Alvaro Idarraga personal communication). The difference 

in the composition of these two plots might be explained by the presence of more transitional 

species from humid environments. Also, is important to highlight that Tuparro is find isolated of 

the rest of the plots because two reasons, the first is the long distance between him and the 

nearest plot (the plots if the Magdalena valley) and that the eastern cordillera act as a 

geographical barrier. Other interesting result is that in the clustering analyses I consistently found 
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a greater proximity between the Caribbean and Inter-Andean valleys plots rather than with 

Tuparro, this is consistent with previous studies that have shown greater aggregation in terms 

of species composition between these two regions (Linares et al. 2011, DRYFLOR 2016). It is 

worth highlighting that the Colorados plot, from the Caribbean region, appears grouped with 

the plots of the Magdalena Valley.  One plausible explanation for this is that Colorados is located 

on the western side of the Magdalena River that could represent a geographic barrier, limiting 

the dispersion of species with the rest of the Caribbean region but also this river might facilitate 

the migration of species from the SDTF of the Magdalena towards the Northern region 

(Pennington 2000).  

 

Previous studies have identified species aggregations related in different regions where SDTF is 

present in the country; for example, DRYFLOR (2016) defined two floristic groups in the interior 

of Colombia: Inter-Andean valleys and the Caribbean region, coinciding with those defined by 

Pizano et al. (2014) and González et al. (2018) in a local scale, where they additionally identified 

the region of the Llanos (Orinoquía). Although in this study such strong relationships were not 

found, there was a tendency for plots to group according to the floristic regions where there are 

located. In relation to clustering by lineage turnover, I observe a greater turnover between the 

Magdalena and the Caribbean plots than between inter-Andean (Magdalena and Cauca Valley) 

plots; this may be a consequence of mountain ranges acting as geographical barriers that limit 

dispersion. 

 

Despite the considerable species turnover observed between plots of SDTF in this study, the 

dominant phylogenetic structure did not differ from a random distribution. This reflects that 

lineages are shared between regions and that the effect of fragmentation is not yet detectable 

in evolutionary patterns. However, this does not exclude the presence of unique lineages such 

as the ones scored with the highest ED values; plots that hold these species, such as Colorados 
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and Tuparro, are of special concern for conservation. On the other hand, Phylogenetic 

community clustering was found in 5 out of 11 plots, indicating that species within these 

communities are more closely related to each other than expected in a random distribution 

(Webb 2000, Cavender-Bares et al. 2004, 2006). Clustering was not linked to plots of a particular 

region and in our dataset, was also not explained by environmental conditions. Remarkably, plots 

belonging to the same region such as Cardonal loma and Cardonal plana present completely  

opposite patterns of phylogenetic structure (Figure 13). Indeed, while clustering was observed 

in Cardonal loma overdispersion was found in Cardonal plana, the difference in abundance 

between these two plots (2008 individuals in Cardonal loma and 1341 in Cardonal plana) may 

be causing the contrast between the structure patterns. It is worth mentioning that although the 

communities belong to the same ecosystem, local conditions like the climatic, edaphic and 

topology may vary, Pennington et al. (2009) state that in some inter-Andean valleys, precipitation 

can change radically over very short distances. In a study conducted by González et al. (2014) on 

a larger scale with a regional pool that included more humid ecosystem species, they found 

cluster patterns associated to environmental variables mainly related to precipitation. In another 

study carried out in Caatinga (Freiro-Moro et al. 2015) when evaluating phylogenetic structure 

patterns, they clearly found a strong phylogenetic aggregation for NRI associated with edaphic 

characteristics, specifically those associated with water availability, reflecting greater 

environmental niche conservatism. 

 

Community phylogenetic studies traditionally have used megatree to infer the relationship 

between the species in a community assemblage, this is an important tool especially when 

molecular information is not available or is limited; nevertheless, it has been argued that the 

estimates of the phylogenetic relationships among the species found within communities are 

not necessarily accurate (Davies et al. 2012). I tested if the phylogenetic structure patterns could 

be affected by the resolution between a megatree phylogeny (Webb & Donoghue 2005) and 
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molecular based phylogeny comparing the results of phylogenetic structure for 6 plots. I found 

that for the NRI index there is a positive correlation between the structure results (Figure 14 a-

b), whereas for NTI I observe that there is no correlation (Figure 14 c-d). This difference observed 

in the results for NTI is due to the fact that since this is a measure associated with the terminals 

of the phylogeny it will be strongly influenced by the resolution. Hence, the importance of using 

more resolute phylogenies for example with the inclusion of other molecular markers such as 

ITS (nuclear gene), which has been reported as one of the molecular markers that achieves 

greater discrimination between species (Gonzalez et al. 2009, Crӓutlein et al. 2011, Kang et al. 

2017). Similar to this study, Kress et al. (2009) found significant differences in the evolutionary 

and ecological inferences when comparing phylogenies with different resolution; they concluded 

that there is a significant loss of information in the tips of the phylogeny when these are less 

resolved. 

 

This study focused on the best-preserved fragments of SDTF in Colombia, the 95% of this 

ecosystem is highly intervened, and just 5% of the remnants are under protection. Because the 

fragmentation is very recent in evolutionary terms, the incorporation of population genetics 

would allow a better interpretation of the affectation by the perturbation regarding the 

phylogenetic structure of the ecosystem. For a better understanding of how different 

evolutionary responses may arise from environmental changes, it would also be interesting to 

integrate the results from this study with functional traits, that would entail to a better 

understanding of the community assembly processes. 

 

It is worth noting some general limitations of this study are that we selected the individuals with 

a DBH > 5 cm, without including the individuals among 2.5 cm y 5 cm of DBH. I worked with the 

plots located in the remnants better conserved and having into account the high human 

intervention, it is not known with certainty how could be varying the composition in that parts 
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less conserved. Finally, and since these studies are based on phylogenetic relationships, the 

incorporation of DNA sequences with more molecular markers, offers the possibility of a better 

delimitation between species and better resolved phylogenetic hypotheses, as well as a greater 

precision in the inferences on community assembly process. 
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SUPPLEMENTARY MATERIALS 

 

Table S1. Sequences downloaded from GenBank 

Original Species name GenBank Species name Accesion number 

Amaioua corymbosa   JQ626322 

Amanoa guianensis Amanoa caribaea AY663561 

Anacardium excelsum   GQ981661 

Apeiba tibourbou   AJ233145 

Belencita nemorosa   KU739570 

Bunchosia pseudonitida Bunchosia armeniaca Z75274 

Bursera simaruba   KJ773325 

Bursera tomentosa   JQ590985 

Caesalpinia coriaria   AY904380 

Caesalpinia ebano Caesalpinia pulcherrima U74190 

Casearia corymbosa Casearia decandra  JQ626222 

Casearia praecox   JQ593981 

Casearia sp1 Casearia guianensis GQ981688 

Casearia sp7 Casearia nitida JX664038 

Casearia sylvestris   AF206746 

Cecropia peltata Cecropia environmental KF270163 

Ceiba pentandra   JX987571 

Cereus hexagonus Cereus fernambucensis AY875240 

Chiococca alba   KJ594151 

Chloroleucon mangense    KU176144 

Chomelia spinosa   JQ593643 

Cochlospermum orinocense Cochlospermum vitifolium JQ591114 

Cordia gerascanthus   JQ590899 

Cynophalla amplissima Capparis spinosa AY167985 

Enterolobium schomburgkii   JQ626149 

Erythrina poeppigiana Erythrina velutina JX856697 

Erythroxylum macrophyllum   JQ594783 

Eugenia biflora   KJ082297 
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Eugenia monticola   JQ592953 

Euphorbia cotinifolia   JN249286 

Ficus zarzalensis Ficus obtusifolia GQ981740 

Forsteronia spicata   JQ590223 

Guarea glabra   U39085 

Guazuma ulmifolia   KF724295 

Haematoxylum brasiletto   KJ468097 

Heisteria acuminata   GQ981760 

Hirtella racemosa   KX180069 

Inga gracilifolia   JQ626130 

Lecythis chartacea   JQ626228 

Licania excelsa Licania tomentosa L11193 

Licania micrantha   JQ626165 

Licania parvifructa   JQ898749 

Licaria guianensis   GQ428569 

Melicoccus bijugatus Melicoccus pedicellaris JQ626266 

Myrcia sp1 Myrcia fallax JQ625851 

Myrospermum frutescens   JQ591961 

Ocotea schomburgkiana Ocotea puberula KF561959 

Oxandra espintana   AY319066 

Pachira nukakica Pachira aquatica AY328178 

Pereskia guamacho   AY875242 

Pithecellobium lanceolatum   JQ591978 

Platymiscium sp Platymiscium trifoliolatum KF436469 

Pouteria plicata Pouteria venosa JQ413830 

Prosopis juliflora   KF471677 

Protium guianense   JQ625777 

Pseudolmedia sp Pseudolmedia laevigata KX640875 

Pterocarpus sp4 Pterocarpus rohrii GQ981862 

Quadrella odoratissima   KU739608 

Sapium glandulosum   AY794841 

Senegalia macbridei Senegalia bonariensis KX640832 

Sideroxylon sp Sideroxylon foetidissimum KJ773891 
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Sorocea trophoides Sorocea saxicola  KX640884 

Spondias mombin   JQ590140 

Talisia sp Talisia hexaphylla JQ625755 

Tapirira guianensis   JQ626278 

Trichilia oligofoliolata Trichilia martiana JQ592754 

Trichilia pallida   JQ626046 

Trichostigma octandrum   KJ594544 

Triplaris melaenodendron   JQ593542 

Zanthoxylum fagara   KJ773993 

Zanthoxylum rhoifolium   KF561971 

Ziziphus sp3 Ziziphus mauritiana KR530242 

Zygia inaequalis Zygia longifolia JQ592098 
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Figure S1 Phylogenetic tree according to Bayesian analysis with molecular sequences of rbcLa. 

The colors of the branches represent the “posterior” probability distribution. Red branches 

represent the highest confidence estimate of the evolutionary relationships, with a 95% the 

highest posterior density. 
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Figure S2 Phylogeny constructed with Phylomatic tool. 
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Diospyros sp2
Gustavia augusta
Lecythis chartacea
Eschweilera tenuifolia
Rudgea crassiloba
Chiococca alba
Chomelia spinosa
Simira rubescens
Genipa americana
Amaioua corymbosa
Aspidosperma cuspa
Aspidosperma polyneuron
Forsteronia spicata
Himatanthus articulatus
Vitex orinocensis
Handroanthus barbatus
Handroanthus billbergii
Handroanthus chrysanthus
Citharexylum kunthianum
Petrea sp
Cordia gerascanthus
Aralia excelsa
Verbesina sp
Heisteria acuminata
Piptadenia sp
Enterolobium cyclocarpum
Enterolobium schomburgkii
Enterolobium sp1
Pithecellobium dulce
Pithecellobium lanceolatum
Calliandra magdalenae
Zygia longifolia
Inga gracilifolia
Inga laurina
Inga sp
Chloroleucon mangense
Albiz ia guachapele
Leucaena leucocephala
Prosopis juliflora
Tachigali guianensis
Caesalpinia coriaria
Caesalpinia pulcherrima
Haematoxylum brasiletto
Senna spectabilis
Platymiscium pinnatum
Platymiscium trifoliolatum
Pterocarpus rohrii
Machaerium biovulatum
Machaerium capote
Machaerium sp1
Coursetia ferruginea
Coursetia sp
Gliric idia sepium
Erythrina velutina
Myrospermum frutescens
Swartz ia trianae
Senegalia bonariensis
Vachellia farnesiana
Vachellia sp
Bentamantha sp
Celtis iguanaea
Claris ia racemosa
Sorocea saxicola
Ficus americana
Ficus obtusifolia
Ficus trigona
Pseudolmedia laevigata
Brosimum alicastrum
Brosimum guianense
Urera simplex
Cecropia environmental
Ampelocera sp1
Ziziphus mauritiana
Ouratea sp
Sapium glandulosum
Croton gossypiifolius
Euphorbia cotinifolia
Mabea trianae
Xylosma intermedia
Casearia aculeata
Casearia decandra
Casearia guianensis
Casearia nitida
Casearia praecox
Casearia sylvestris
Lindackeria paludosa
Bunchosia armeniaca
Malpighia glabra
Licania apetala
Licania micrantha
Licania parvifructa
Licania tomentosa
Hirtella racemosa
Erythroxylum jaimei
Erythroxylum macrophyllum
Erythroxylum ulei
Amanoa caribaea
Clusia umbellata
Connarus ruber
Sapindus saponaria
Talis ia hexaphylla
Matayba sp
Melicoccus pedicellaris
Cupania sp1
Paullinia globosa
Trichilia carinata
Trichilia martiana
Trichilia pallida
Guarea glabra
Zanthoxylum fagara
Zanthoxylum rhoifolium
Zanthoxylum schreberi
Zanthoxylum verrucosum
Amyris pinnata
Tapirira guianensis
Anacardium excelsum
Spondias mombin
Astronium graveolens
Bursera simaruba
Bursera tomentosa
Protium guianense
Apeiba tibourbou
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a.  

 

b.  

 

Figure S3 Correlation between phylogenetic structure index: a. NRI and b. NTI, based on the 

rbcLa phylogeny and the megatree phylogeny. 

 


