DISEÑO DE PAVIMENTO RIGIDO DE LA CALLE 7 ENTRE CARRERA 7 Y 5 DEL MUNICIPIO DE PUERTO LOPEZ META

ANGELA PAOLA MARTINEZ FAJARDO

Trabajo de grado presentado como requisito para optar al título de

ESPECIALISTA EN INGENIERIA DE PAVIMENTOS

UNIVERSIDAD MILITAR NUEVA GRANADA
FACULTAD DE INGENIERIA
ESPECIALIZACION EN INGENIERIA DE PAVIMENTOS
BOGOTA, 14 DE JUNIO DE 2019
DISEÑO DE PAVIMENTO RIGIDO DE LA CALLE 7 ENTRE CARRERA 7 Y 5 DEL MUNICIPIO DE PUERTO LOPEZ META

ANGELA PAOLA MARTINEZ FAJARDO

Trabajo de grado presentado como requisito para optar al título de

ESPECIALISTA EN INGENIERIA DE PAVIMENTOS

TUTOR

Ing. JOSE LUIS MERCADO

UNIVERSIDAD MILITAR NUEVA GRANADA
FACULTAD DE INGENIERIA
ESPECIALIZACION EN INGENIERIA DE PAVIMENTOS
BOGOTA, 14 DE JUNIO DE 2019
AGRADECIMIENTOS

Agradezco a mis padres por el amor que me brindan cada día y su apoyo en la toma de mis decisiones, por estar en los buenos y malos momentos. El logro también es de ellos.

Así mismo a mis hermanos Jotman y Miguel por su apoyo incondicional, porque me animan cada día a crecer como persona y como profesional.

A los buenos amigos que he hecho durante mi vida, y a mí por tanta paciencia.
Nota de aceptación

Jurado1

Jurado2

BOGOTA (14-JUNIO-2019)
TABLA DE CONTENIDO

INDICE DE TABLAS ...6
1. INTRODUCCIÓN...8
2. GENERALIDADES..9
 1.1 Planteamiento del problema ...9
 Formulación de la pregunta de investigación ...10
 1.2 Justificación ...10
 1.3 Objetivos ..11
 1.4 Localización del proyecto ...11
3. MARCO TEORICO ...13
4. METODOLOGIA ..22
5. ANÁLISIS DE RESULTADOS ..24
 5.1 Caracterización del tipo de suelo para el diseño ...24
 5.2 Clasificación y caracterización de los suelos ..25
 5.3 Transito ..26
 5.4 Diseño de pavimento ..27
 5.5 Resumen de resultados ...30
6. CONCLUSIONES ..37
7. RECOMENDACIONES ...38
8. BIBLIOGRAFÍA ...39
INDICE DE TABLAS

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cuadro resumen propiedades mecánicas y clasificación material de Subrasante</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Composición vehicular del tránsito de la zona y sus factores de diseño</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Calculo del número de ejes comerciales por día</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Proyección de cargas para el periodo de diseño</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>Periodo del proyecto a adoptar según tipo de carreteras</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>Niveles de confiabilidad a adoptar en función del tipo de carretera</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>Desviación normal estándar</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>Calidad del drenaje y valores del coeficiente de drenaje Cd.</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>Valores del coeficiente J de trasmisión de cargas.</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>Correlación entre la resistencia a la compresión y el módulo de rotura</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>Calculo del Kc</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>Datos de entrada para los software de diseño y cálculo de espesores</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>Recomendaciones sobre varillas</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>Dimensiones mínimas de los pasadores de carga PCA (1975)</td>
<td>36</td>
</tr>
</tbody>
</table>
INDICE DE FIGURAS

Figure 1 Calle7 entre Cra 7 y 5 ...9
Figure 2 Calle 7 entre Cra 7 y 5 ...9
Figure 3 Calle 7 entre Cra 6 y 5 ...10
Figure 4 Calle 7 entre Cra 6 y 5 ...10
Figure 5 Localización del Municipio de Puerto López-Google maps12
Figure 6 Ubicación zona de estudio-Google earth ...12
Figure 7 Calle 7 entre Cra 7 y 5 ...13
Figure 8 Estructura de un pavimento-Autor ..16
Figure 9 cálculo de espesores Aashto 93 ...31
Figure 10 Cálculo de espesores con software BS-PCAA32
Figure 11 Cálculo de espesores con software BS-PCAA33
Figure 12 Cálculo de espesores con software BS-PCAA33
Figure 13 Cálculo de espesores con software BS-PCAA34
Figure 14 Cálculo de espesores con software BS-PCAA34
1. **INTRODUCCIÓN**

Los pavimentos son una de las partes fundamentales del sistema de comunicaciones de un país, pues permiten la circulación rápida, segura y eficiente de transportes terrestres, los cuales movilizan personas y bienes. El buen estado de los pavimentos impacta de forma positiva en el desarrollo social, económico y cultural de un país.

El propósito de este diseño es el mismo que para otras estructuras de ingeniería, obtener el espesor mínimo que cumpla con las especificaciones, y que resultara en el costo más bajo. De acuerdo a esto se elaborará el diseño más óptimo realizando un estudio de TPD (tránsito de promedio diario) y la caracterización del suelo, ya con estos factores se realizará el diseño de la estructura de pavimento.

Todo esto busca desarrollar una alternativa de solución para la calle 7 entre cra 7 y 5 del municipio de puerto López meta.
2. GENERALIDADES

1.1 Planteamiento del problema

Varias vías del Municipio de Puerto López se encuentran en mal estado por la carencia de un adecuado pavimento; lo que trae como consecuencia efectos negativos sobre las diferentes comunidades afectadas por esta problemática.

La Calle 7 entre cra 7 y 5 carece de una buena malla vial lo cual ha generado problemas de un buen acceso vehicular directo a las diferentes viviendas y negocios comerciales, produciendo malestar en la población, así mismo el tener que esquivar los baches que presenta la vía para poder transitar en ella. Cabe notar que, para cualquier municipio, el contar con infraestructura adecuada, funcional y estratégica, es de vital importancia para facilitar su desarrollo, las vías constituyen unas de las estructuras principales que aportan a dicho desarrollo.
Formulación de la pregunta de investigación

¿Cómo diseñar el pavimento para la calle 7 entre carrera 7 y 5 del municipio de puerto López, meta?

1.2 Justificación

En nuestro país se ha convertido en una costumbre hablar sobre la necesidad que tiene el país de construir infraestructura vial para capitalizar adecuadamente los niveles de crecimiento económico.

Pero más allá de las bondades en materia de competitividad y comercio exterior que trae consigo la construcción de vías, es indudable que hay otra gran cantidad de beneficiarios, no tan visibles y conocidos, como las comunidades ubicadas en las zonas de influencia directa de los proyectos. (Ramírez, 2013)

La construcción de vías tiene un impacto notablemente positivo, generando empleo, minimizando los costos por transporte, alimentos y demás insumos, disminuyendo la tasa de
deserción escolar entre otros beneficios, disminuyendo los tiempos de desplazamiento (Ramirez, 2013)

1.3 Objetivos

- **Objetivo general**

 Proponer un diseño para la construcción de un pavimento rígido para la calle 7 entre carrera 7 y 6 del municipio de puerto López meta.

- **Objetivos**

 - Recopilar la información necesaria para el desarrollo del diseño
 - Analizar la información recolectada.
 - Aplicar normatividad vigente.
 - Diseñar el espesor del pavimento rígido empleando el método AASHTO-93 y BS-PCAA.

1.4 Localización del proyecto

 El proyecto se localiza en el municipio de puerto López meta, en la región oriental del país. La ubicación del sector en donde se ubica el proyecto es la calle 7 entre las carreras 7 y 5 en el barrio centro, zona urbana del municipio.
Figure 5 Localización del Municipio de Puerto López-Google maps

Figure 6 Ubicación zona de estudio-Google earth
13

3. MARCO TEORICO

Transito: Dentro de los alcances de los trabajos de estructuración un factor relevante es el de cargas por eje esperadas en el carril de diseño, estas establecerán la estructura y características del pavimento para un periodo de diseño Seguramente el parámetro más importante dentro del diseño de un pavimento rígido o flexible es el transito;

Confiabilidad: Uso del concepto de confiabilidad Este concepto fue utilizado por primera vez para el diseño de pavimentos flexibles en 1973 en Texas (Texas Highway Department). Los conceptos de confiabilidad fueron desarrollados e incorporados en los procedimientos de diseño AASHTO en 1973 (Kher y Darter) y finalmente fueron adoptados en la guía de diseño AASHTO de 1986.

La confiabilidad en el diseño de un pavimento puede definirse, de acuerdo a Darter y Hudson (1973) como: Confiable es la probabilidad de que el sistema estructural que forma el
pavimento cumpla su función prevista dentro de su vida útil bajo las condiciones (medio ambiente) que tiene lugar en ese lapso. (pavimentos B. , 2012)

Servicialidad: La servicialidad se usa como una medida del comportamiento del pavimento, la misma que se relaciona con la seguridad y comodidad que puede brindar al usuario (comportamiento funcional), cuando éste circula por la vialidad. También se relaciona con las características físicas que puede presentar el pavimento como grietas, fallas, peladuras, etc, que podrían afectar la capacidad de soporte de la estructura (comportamiento estructural).

El concepto de servicialidad está basado en cinco aspectos fundamentales resumidos como sigue:

1. Las carreteras están hechas para el confort y conveniencia del público usuario.

2. El confort, o calidad de la transitabilidad, es materia de una respuesta subjetiva de la opinión del usuario.

3. La serviciabilidad puede ser expresada por medio de la calificación hecha por los usuarios de la carretera y se denomina la calificación de la serviciabilidad.

4. Existen características físicas de un pavimento que pueden ser medidas objetivamente y que pueden relacionarse a las evaluaciones subjetivas. Este procedimiento produce un índice de serviciabilidad objetivo.

5. El comportamiento puede representarse por la historia de la serviciabilidad del pavimento. Cuando el conductor circula por primera vez o en repetidas ocasiones sobre una vialidad, experimenta la sensación de seguridad o inseguridad dependiendo de lo que ve y del grado de dificultad para controlar el vehículo. El principal factor asociado a la seguridad y comodidad del usuario es la calidad de rodamiento que depende de la regularidad o rugosidad superficial.
El PSI califica a la superficie del pavimento de acuerdo a una escala de valores de 0 a 5. Claro está que, si el usuario observa agrietamientos o deterioros sobre la superficie del camino aún sin apreciar deformaciones, la clasificación decrece. El diseño estructural basado en la serviciabilidad, considera necesario determinar el índice de serviciabilidad inicial (P0) y el índice de serviciabilidad final (Pt), para la vida útil o de diseño del pavimento.

Comportamiento del pavimento (performance): Tendencia de la serviciabilidad con el incremento en el número de aplicaciones de carga por eje.

Período de comportamiento (periodo de diseño): Lapso que transcurre desde que un pavimento es construido o rehabilitado, hasta que alcanza su serviciabilidad terminal Para la estimación del tránsito se emplea la ecuación:

\[N = (Nd \times 365 \times Fd \times Fc) \times \left(\frac{(1 + r)^n - 1}{r} \right) \]

Dónde:

N: Transito en ejes equivalentes de 8.2 toneladas

Nd: Transito equivalente acumulado.

Fd: Factor sentido.

Fca.: Factor carril
r: Taza de crecimiento del tránsito.

n: periodo de diseño en años.

(Robles, 2018)

Pavimento rígido: Un pavimento de concreto o pavimento rígido consiste básicamente en una losa de concreto simple o armado, apoyada directamente sobre una base o Subbase. La losa, debido a su rigidez y alto módulo de elasticidad, absorbe gran parte de los esfuerzos que se ejercen sobre el pavimento lo que produce una buena distribución de las cargas de rueda, dando como resultado tensiones muy bajas en la Subrasante.

Subrasante: La Subrasante es la capa de terreno que soporta el paquete estructural y que se extiende hasta una profundidad en la cual no influyen las cargas de tránsito. Esta capa puede estar formada en corte o relleno, dependiendo de las características del suelo encontrado. Una vez compactada, debe tener las propiedades, secciones transversales y pendientes especificadas de la vía. El espesor del pavimento dependerá en gran parte de la calidad de la subrasante, por lo que ésta debe cumplir con los requisitos de estabilidad, incompresibilidad y resistencia a la expansión y contracción por efectos de la humedad. El comportamiento estructural de un pavimento frente a cargas externas, varía de acuerdo a las capas que lo constituyen. La principal diferencia entre el
comportamiento de pavimentos flexibles y rígidos es la forma cómo se reparten las cargas. Ver figura 1.4. En un pavimento flexible, la distribución de la carga está determinada por las características del sistema de capas que lo conforman. Las capas de mejor calidad están cerca de la superficie donde las tensiones son mayores, y estas cargas se distribuyen de mayor a menor a medida que se va profundizando hacia los niveles inferiores. En el caso de pavimentos rígidos, la losa es la capa que asume casi toda la carga. Las capas inferiores a la losa, en términos de resistencia, son despreciables. En los pavimentos rígidos, las cargas se distribuyen uniformemente debido a la rigidez del concreto, dando como resultado tensiones muy bajas en la subrasante. En cambio, los pavimentos flexibles tienen menor rigidez, por eso se deforman más que el rígido y se producen tensiones mayores en la subrasante. (Velasquez, 2009)

Subbase: La Subbase se localiza en la parte inferior de la base, por encima de la subrasante. Es la capa de la estructura de pavimento destinada a soportar, transmitir y distribuir con uniformidad las cargas aplicadas en la carpeta asfáltica.

Está conformada por materiales granulares, que le permiten trabajar como una capa de drenaje y controlador de ascensión capilar de agua, evitando fallas producidas por el hincharamiento del agua, causadas por el congelamiento, cuando se tienen bajas temperaturas. Además, la Subbase controla los cambios de volumen y elasticidad del material del terreno de fundación, que serían dañinos para el pavimento. (Velasquez, 2009)

Rehabilitación de Pavimentos: Es el proceso por medio del cual la estructura de pavimento, es restaurada a su condición original de soporte. Se obtiene de la recuperación con o sin estabilización, del pavimento existente en combinación con material de aporte si es necesario.
En este proceso, los materiales provenientes de los pavimentos existentes, formarán parte de la nueva estructura. (INGENIERIA CIVIL APUNTES)

Caracterización de suelos: Los ensayos con carga estática no repetida efectuados en el sitio son usados para evaluación y diseño de estructuras de pavimento. Los ensayos con carga estática no repetida efectuados en suelos, bases no cementadas y en materiales de Subbase, para determinar el módulo de reacción de la subrasante o una medida de la resistencia al corte de las capas del pavimento. (Robles, 2018)

Granulometría por tamizado para suelos: Este ensayo consiste en la clasificación del terreno natural para compararlo con la clasificación de materiales de suelos, de acuerdo con las normas ASTM D 422 / AASHTO T 88 (INVIAS, 2013).

Límites de Atterberg: Estos ensayos junto con la granulometría por tamizado se requieren para la clasificación del suelo, en este caso su consistencia con respecto al contenido de humedad. A estos contenidos de humedad en los puntos de transición de un estado al otro son los denominados límites de Atterberg, de acuerdo con las normas ASTM D 4318/ AASTHO T 89 (INVIAS, 2013)

Límite líquido: Se define como el cambio de estado plástico al estado líquido. (Berry)

Límite plástico: Que se define como el cambio entre el estado no plástico y el estado plástico (Berry)

Límite de retracción o contracción: estado en que el suelo pasa de un estado semisólido a un estado sólido y deja de contraerse al perder humedad, según ASTM D 427/ AASHTO T 92.

Relación de humedad y densidad (Próctor Estándar y/o Próctor Modificado):
Mediante esta prueba se puede determinar la compactación o densidad máxima de un suelo o
agregado en relación con su contenido de humedad. Existen dos tipos de ensayo Próctor normalizados:

Ensayo Próctor Estándar, de acuerdo con las normas ASTM D 698 / AASTHO T 99, método C y el Ensayo Próctor Modificado, de acuerdo con las normas ASTM D 1557 / AASTHO T 180, método D. La diferencia entre ambos ensayos radica en la distinta energía utilizada, debido a mayor peso del pisón y mayor altura de caída en el Próctor Modificado (INVIAS, 2013)

CBR en laboratorio: Determina la capacidad soportante del suelo (Relación de Soporte de California, por sus siglas en Ingles), de acuerdo con las normas ASTM D 1883 / AASHTO T 193, en el cual se mide la resistencia al esfuerzo cortante de un suelo (subrasante), Subbase y/o base granular de un pavimento, bajo condiciones controladas de humedad y densidad. (Robles, 2018)

CBR in situ: o ensayo de Anillo de carga Realizado únicamente en la subrasante y sirve para correlacionarlo con el CBR en laboratorio, de acuerdo con la norma TB ENG 37 del Cuerpo de Ingenieros de Estados Unidos. (Robles, 2018)

Diseño por Modelo AASHTO: AASHTO es una asociación de estados unidos sin fines de lucro, representa los cinco modos de transporte: aire, autópistas, transporte público, ferrocarril y agua, su objetivo principal es fomentar el desarrollo, la operación y el mantenimiento de un sistema integrado de transporte nacional, es un líder internacional en el establecimiento de estándares técnicos para todas las fases del desarrollo de sistemas de carreteras los estándares se emiten para el diseño, construcción de carreteras y puentes, materiales y muchas otras áreas técnicas (AASHTO, 1993).

La metodología AASHTO se basa en dos fundamentos, el tránsito que lleva a la falla del
pavimento es función del número estructural (Corredor, 2008), de la resistencia de la subrasante, de la pérdida deseada de índice de servicio y de la confiabilidad elegida, el otro es que incluye la posibilidad de que se reduzca el periodo de diseño por la presencia de suelos de subrasante expansivos; además define los siguientes conceptos (Sabogal, 2008).

Ecuación AASHTO-93: Es un modelo cuyo objetivo es resolver ecuaciones de la guía AASHTO para el dimensionamiento de pavimentos llámense rígidos.

La ecuación de diseño fue modificada en 1962 usando la ecuación de tensiones en esquina de Spangler para tener en cuenta las propiedades de los materiales como ser la resistencia a la flexión del hormigón F, el módulo elástico E y el valor soporte de la subrasante k.

En 1972 se introdujo el factor de transferencia de cargas en juntas J, y se llega a la ecuación de diseño de 1972 (pavimentos, bloq pavimentos, 2010)

\[
\log W_{18} = 7.36 \log(D + 1) - 0.06 + \frac{G_1}{1 + 1.624 \times 10^7 (D + 1)^{0.46}} + 0.22 - 0.32 \rho_t \left[\log \left(\frac{S'_o}{215.63} \right) \right] \left[\log \left(\frac{D^{0.16} - 1.132}{D^{0.75} - 16.42} \frac{Z^{0.26}}{2^{0.25}} \right) \right]
\]

\[Z = \frac{E}{k}\]

\[S'_o\] es el módulo de rotura (resistencia a la flexión con carga en los tercios centrales).

Donde:

\[W_{18}\] = número de aplicaciones de carga de 80 KN

\[Z_R\] = abscisa correspondiente a un área igual a la confiabilidad R en la curva de distribución normalizada (Ver cap. 6, ap. 6.2.3)

\[S_o\] = desviación estándar de las variables
D = espesor de la losa (pulg)

PSI = pérdida de serviciabilidad de diseño

$S'_c = módulo de rotura del hormigón (psi)$

$J = coeficiente de transferencia de carga$

$C_d = coeficiente de drenaje$

$E_c = módulo de elasticidad del hormigón (psi)$

$K = módulo de reacción de subrasante (pci)$

Con las nuevas modificaciones las variables vienen expresadas en:

D = espesor de la losa (mm)

$S'_c = módulo de rotura del hormigón (kPa)$

$E_c = módulo de elasticidad del hormigón (kPa)$

$K = módulo de reacción de subrasante (kPa/mm)$
4. METODOLOGIA

El proceso investigativo que se adelanta, tiene que ver con un enfoque de investigación aplicada de nivel descriptivo. Así pues, se propone realizar un el diseño de un pavimento rígido para la calle 7 entre cra 7 y 5 del municipio de Puerto López Meta.

A través del método AASHTO 93 y PCA, obtendremos el diseño de pavimento rígido, para el desarrollo del proyecto tendremos en cuenta los siguientes aspectos.

Transito: se realizó una visita al municipio de Puerto López con el fin de obtener un estudio de tránsito, para lo cual, se determinó la estación de conteo, así de esta manera se podría registrar el número de vehículos que pasan por un punto (autos, buses y camiones).

Con la información recolectada se procedió a procesarla en el programa Excel con el fin de realizar las proyecciones que permitan clasificar el transito promedio diario semanal (TPDS).

Estudios de suelo: Se debe de realizar la caracterización del suelo, con el fin de obtener la capacidad portante del mismo y CBR, así como todos los aspectos técnicos a tener en cuenta.

Aspectos geotécnicos: La exploración en campo consistió en realizar apiques en la calle 7 entre carrera 7 y 5 dichos apiques se realizaron con el fin de tomar muestras para la obtención de clasificación y propiedades mecánicas de cada uno de los estratos encontrados.

Diseño del pavimento: En el diseño de pavimento se utilizó la metodología AASHTO, donde se determinó el espesor D, de un pavimento de concreto para que este pueda soportar el tránsito.

Se tuvo en cuenta los parámetros de:
Tráfico: representado por el número de ejes equivalentes a 82 KN que utilizarán la vía durante el período de diseño.

La confiabilidad en el diseño de un pavimento puede definirse, de acuerdo a Darter y Hudson (1973) como: Confiabilidad es la probabilidad de que el sistema estructural que forma el pavimento cumpla su función prevista dentro de su vida útil bajo las condiciones (medio ambiente) que tiene lugar en ese lapso.

Servicialidad. Es la condición de un pavimento para proveer un manejo seguro y confortable a los usuarios de un determinado momento, calculando el índice de servicialidad inicial (Po) y el índice de servicialidad final (Pf).

Desviación estándar So, referente al número de ejes que puede soportar el pavimento hasta que su índice de servicio descienda por debajo de un determinado valor Pt.

Coeficiente de drenaje Cd, determinado el tiempo que tarda el agua infiltrada en ser evacuada del pavimento y el porcentaje de tiempo a lo largo del año durante el cual el pavimento está expuesto a niveles de humedad.

Coeficiente de transmisión de carga (J), con el cual establecemos la capacidad del pavimento de concreto para transmitir las cargas a través de las juntas y del tipo de confinamiento lateral.

Módulo de elasticidad Ec del concreto, que se determinó de acuerdo a la resistencia a la compresión simple del concreto (4000 psi).

Determinación del módulo de reacción de la Subrasante “K”, obtenido realizando una correlación entre el CBR y el módulo de reacción del suelo. Finalmente se procedió a calcular el espesor de la losa, con los datos obtenidos. (Alberto, 2018)
5. ANÁLISIS DE RESULTADOS

5.1 Caracterización del tipo de suelo para el diseño

Tabla 1 Cuadro resumen propiedades mecánicas y clasificación material de Subrasante

<table>
<thead>
<tr>
<th>ENSAYO No.</th>
<th>USC</th>
<th>LOCALIZACIÓN</th>
<th>CONO DYNAMICO</th>
<th>C.B.R. (1) N.S.</th>
<th>C.B.R. (2) S</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>CL</td>
<td>CLL 7 ENTRE CRAS 7 Y 6</td>
<td>5.94</td>
<td>18.29</td>
<td>12.73</td>
</tr>
<tr>
<td>19</td>
<td>CL</td>
<td>CLL 7 ENTRE CRAS 6 Y 5</td>
<td>11.53</td>
<td>7.06</td>
<td>7.15</td>
</tr>
<tr>
<td>20</td>
<td>ML</td>
<td>CLL 7 ENTRE CRAS 8 Y 7</td>
<td>9.42</td>
<td>6.72</td>
<td>9.61</td>
</tr>
<tr>
<td>21</td>
<td>CL-ML</td>
<td>CLL 6 ENTRE CRAS 7 Y 6</td>
<td>5.26</td>
<td>11.39</td>
<td>7.24</td>
</tr>
<tr>
<td>22</td>
<td>CL</td>
<td>CLL 6 ENTRE CRAS 6 Y 5</td>
<td>3.05</td>
<td>3.81</td>
<td>3.25</td>
</tr>
<tr>
<td>23</td>
<td>CL</td>
<td>CLL 6 ENTRE CRAS 8 Y 7</td>
<td>4.04</td>
<td>3.67</td>
<td>5.71</td>
</tr>
<tr>
<td>24</td>
<td>CL</td>
<td>CRA 7 ENTRE CLLS 6 Y 7</td>
<td>2.84</td>
<td>6.83</td>
<td>7.28</td>
</tr>
<tr>
<td>25</td>
<td>CL</td>
<td>CRA 6 ENTRE CLLS 6 Y 7</td>
<td>2.89</td>
<td>3.25</td>
<td>4.21</td>
</tr>
<tr>
<td>26</td>
<td>CL</td>
<td>CLL 7 ENTRE CRAS 7 Y 6</td>
<td>2.93</td>
<td>8.49</td>
<td>6.64</td>
</tr>
<tr>
<td>27</td>
<td>CL</td>
<td>CLL 6 ENTRE CRAS 5 Y 6</td>
<td>2.32</td>
<td>8.39</td>
<td>6.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>---------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>28</td>
<td>CL-ML</td>
<td>CLL 6 ENTRE CRAS 6 Y 7</td>
<td>5.66</td>
<td>3.96</td>
<td>2.57</td>
</tr>
<tr>
<td>29</td>
<td>CL</td>
<td>CLL 5 ENTRE CRAS 5 Y 6</td>
<td>2.59</td>
<td>10.24</td>
<td>6.02</td>
</tr>
<tr>
<td>30</td>
<td>CL</td>
<td>CRA 5 ENTRE CLLS 5 Y 6</td>
<td>4.14</td>
<td>8.06</td>
<td>6.90</td>
</tr>
<tr>
<td>31</td>
<td>CL</td>
<td>CRA 5 ENTRE CLLS 5 Y 6</td>
<td>2.13</td>
<td>6.36</td>
<td>4.95</td>
</tr>
<tr>
<td>32</td>
<td>CL</td>
<td>CLL 6 ENTRE CRAS 4 Y 5</td>
<td>1.76</td>
<td>6.13</td>
<td>2.12</td>
</tr>
<tr>
<td>33</td>
<td>CL</td>
<td>CLL 6 ENTRE CRAS 4 Y 5</td>
<td>1.16</td>
<td>6.43</td>
<td>5.03</td>
</tr>
<tr>
<td>34</td>
<td>CL</td>
<td>CLL 5 ENTRE CRAS 4 Y 5</td>
<td>4.77</td>
<td>10.64</td>
<td>8.65</td>
</tr>
<tr>
<td>35</td>
<td>CL</td>
<td>CLL 5 ENTRE CRAS 4 Y 5</td>
<td>3.59</td>
<td>8.20</td>
<td>7.06</td>
</tr>
<tr>
<td>36</td>
<td>CL-ML</td>
<td>CRA 4 ENTRE CLLS 5 Y 6</td>
<td>9.51</td>
<td>8.58</td>
<td>6.62</td>
</tr>
<tr>
<td>37</td>
<td>CL</td>
<td>CRA 4 ENTRE CLLS 5 Y 6</td>
<td>2.54</td>
<td>3.49</td>
<td>3.35</td>
</tr>
</tbody>
</table>

C.B.R. PROMEDIO 5.62

5.2 Clasificación y caracterización de los suelos

Material Granular

Datos de resultados: Grava bien gradada con limo y arena, la cual presenta un espesor variable de 0.40 a 0.20m.

Subrasante: Datos de resultados: Bajo la capa granular se observó el terreno natural, descrito como material arcilloso de consistencia media a alta, con humedad alta en algunos tramos; limos de humedad media, la resistencia de la Subrasante fue valorada mediante ensayos CBR en estado inalterados y sumergidos descritos en la tabla anterior.
5.3 Transito

A partir del estudio de transito realizado en el sector, se determinó el transito promedio diario semanal (TPDS), en el cual se pudo establecer el porcentaje de automóviles, buses y camiones que transitan por esta vía y categorizarlos según si composición por número de ejes y carga. (LTDA, 2018)

Tabla 2 Composición vehicular del tránsito de la zona y sus factores de diseño

<table>
<thead>
<tr>
<th>TPDS</th>
<th>3574 vehículos/ Día</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPOSICION VEHICULAR</td>
<td>A (%) 86.40</td>
</tr>
<tr>
<td>B (%)</td>
<td>6.40</td>
</tr>
<tr>
<td>C (%)</td>
<td>7.30</td>
</tr>
<tr>
<td>C2G (%)</td>
<td>91.10</td>
</tr>
<tr>
<td>C3-C4 (%)</td>
<td>7.90</td>
</tr>
<tr>
<td>C5</td>
<td>0.50</td>
</tr>
<tr>
<td>>C5</td>
<td>0.60</td>
</tr>
<tr>
<td>PERIODO DISEÑO, n</td>
<td>20</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>2.77</td>
</tr>
<tr>
<td>Fd</td>
<td>0.5</td>
</tr>
<tr>
<td>Fca</td>
<td>0.9</td>
</tr>
<tr>
<td>Fsc</td>
<td>1.1</td>
</tr>
<tr>
<td>Fp</td>
<td>26.612</td>
</tr>
<tr>
<td>MODULO ROTURA CONCRETO</td>
<td>4.2 Mpa</td>
</tr>
<tr>
<td>JUNTAS CON PASADORES</td>
<td>SI</td>
</tr>
<tr>
<td>BERMAS DE CONCRETO</td>
<td>SI</td>
</tr>
</tbody>
</table>

Con estos datos recolectados, se procede a determinar el número de ejes comerciales por día

Tabla 3 Calculo del número de ejes comerciales por día

<table>
<thead>
<tr>
<th>TIPO DE VEHICULO</th>
<th>TPDo VEHICULOS</th>
<th>% VEHICULOS</th>
<th>% VEHICULOS COMERCIALES</th>
<th># EJES COMERCIALES POR DIA/CARRIL</th>
<th># VEHICULOS COMERCIALES DIA/CARRIL POR CADA 1000 VC</th>
<th># DE EJES POR CADA 1000 VEHICULOS COMERCIALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS</td>
<td>3574</td>
<td>6.4%</td>
<td>101</td>
<td>467</td>
<td>934</td>
<td></td>
</tr>
<tr>
<td>CAMION C2G</td>
<td>3574</td>
<td>91.1%</td>
<td>7.3</td>
<td>105</td>
<td>485</td>
<td>970</td>
</tr>
<tr>
<td>CAMION C3-C4</td>
<td>3574</td>
<td>7.9%</td>
<td>7.3</td>
<td>9</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>CAMION C5</td>
<td>3574</td>
<td>0.5%</td>
<td>7.3</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>CAMION >C5</td>
<td>3574</td>
<td>0.6%</td>
<td>7.3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SUMATORIA</td>
<td>100%</td>
<td>Σ</td>
<td>216</td>
<td>1000</td>
<td>1952</td>
<td>50</td>
</tr>
</tbody>
</table>

Posteriormente se realiza la proyección de las cargas que tiene el trafico estudiado durante los 20 años de diseño que se tienen para la vía, dando así un total de cargas por ejes equivalentes de 4’197.637.
Cargas por cada 1000 VC # Ejes en el carril de diseño/periodo de diseño

<table>
<thead>
<tr>
<th>CARGAS Kn</th>
<th>EJES SIMPLES</th>
<th># EJES EN EL CARRIL DE DISEÑO/PERIODO DE DISEÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2G TRASERO</td>
<td>89</td>
<td>485.16</td>
</tr>
<tr>
<td>C3-C4</td>
<td>82</td>
<td>42.07</td>
</tr>
<tr>
<td>>C5</td>
<td>77</td>
<td>3.19</td>
</tr>
<tr>
<td>B+C5</td>
<td>59</td>
<td>469.56</td>
</tr>
<tr>
<td>C2P TRASERO</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>C2G DELANTERO</td>
<td>48</td>
<td>485.16</td>
</tr>
<tr>
<td>B+C5</td>
<td>39</td>
<td>466.9</td>
</tr>
<tr>
<td>C2P DELANTERO</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>EJES TANDEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 TANDEM</td>
<td>216</td>
<td>2.66</td>
</tr>
<tr>
<td>C5 OTRO TANDEM</td>
<td>197</td>
<td>2.66</td>
</tr>
<tr>
<td>C3-C4</td>
<td>192</td>
<td>42.07</td>
</tr>
<tr>
<td>C6</td>
<td>179</td>
<td>3.19</td>
</tr>
<tr>
<td>EJES TRIDEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>3.19</td>
<td>6687</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4197637</td>
<td></td>
</tr>
</tbody>
</table>

5.4 Diseño de pavimento
En este caso se propone efectuar el diseño por la metodología AASHTO 93.

METODO AASHTO 93 Y PCA

AASHTO 93
Determinación de los factores.

Tráfico, datos de los resultados:
- Total, ejes equivalentes 80 KN (8,2 T) = 4.197.637
- KN en el carril de diseño= 908.075
- Serviciabilidad.
- ΔPSI=PO – Pf

Siendo:
- Po: Índice de serviciabilidad inicial = 4,5 (de acuerdo Aashto)
- Pf: Índice de serviciabilidad final = 2 (de acuerdo Aashto,)

Periodo de diseño: 20 años, de acuerdo a la siguiente tabla.
Confiabilidad. De acuerdo con la tabla 6 dada por el método de la AASHTO para una carretera colectora, la confiabilidad R escogido es el 85%. Con el valor R (Confiabilidad) determinamos Z_r de -0.841.

Tabla 6 Niveles de confiabilidad a adoptar en función del tipo de carretera

<table>
<thead>
<tr>
<th>Tipo de Carretera</th>
<th>Niveles de Confiabilidad</th>
<th>Niveles de Confiabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urbana</td>
<td>Interurbana</td>
</tr>
<tr>
<td>Autopistas y carreteras importantes</td>
<td>85 - 99,9</td>
<td>80 - 99,9</td>
</tr>
<tr>
<td>Arterias principales</td>
<td>80 - 99</td>
<td>75 - 95</td>
</tr>
<tr>
<td>Colectoras</td>
<td>80 - 95</td>
<td>75 - 95</td>
</tr>
<tr>
<td>Locales</td>
<td>50 - 80</td>
<td>50 - 80</td>
</tr>
</tbody>
</table>

Tabla 7 Desviación normal estándar

<table>
<thead>
<tr>
<th>Confiabilidad R, %</th>
<th>Desviación normal estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-0.000</td>
</tr>
<tr>
<td>60</td>
<td>-0.253</td>
</tr>
<tr>
<td>70</td>
<td>-0.524</td>
</tr>
<tr>
<td>75</td>
<td>-0.674</td>
</tr>
<tr>
<td>80</td>
<td>-0.841</td>
</tr>
<tr>
<td>85</td>
<td>-1.037</td>
</tr>
<tr>
<td>90</td>
<td>-1.282</td>
</tr>
<tr>
<td>95</td>
<td>-1.645</td>
</tr>
<tr>
<td>99.99</td>
<td>-3.750</td>
</tr>
</tbody>
</table>

Desviación estándar S_o. La guía AASHTO recomienda adoptar el valor de S_o entre 0.30 a 0.40 para pavimentos rígidos, tomando para el proyecto el valor intermedio = 0.35 por ser una construcción nueva de pavimento rígido.
Coeficiente de drenaje \(C_d \). De acuerdo a la Aashto, sugiere:

Tabla 8 Calidad del drenaje y valores del coeficiente de drenaje \(C_d \).

<table>
<thead>
<tr>
<th>CALIDAD DEL DRENAJE</th>
<th>TIEMPO DE REMOCIÓN DEL AGUA</th>
<th>PORCENTAJE DEL TIEMPO EN QUE LA ESTRUCTURA ESTÁ EXPUESTA A NIVELES DE HUMEDAD CERCANOS A LA SATURACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>2 horas</td>
<td>1.00 - 1.05</td>
</tr>
<tr>
<td>Bueno</td>
<td>1 día</td>
<td>1.15 - 1.25</td>
</tr>
<tr>
<td>Regular</td>
<td>1 semana</td>
<td>1.00 - 1.15</td>
</tr>
<tr>
<td>Malo</td>
<td>1 mes</td>
<td>0.90 - 1.00</td>
</tr>
<tr>
<td>Muy Malo</td>
<td>no drena</td>
<td></td>
</tr>
</tbody>
</table>

La calidad del drenaje se tomó como bueno y un porcentaje de tiempo en que el pavimento está expuesto a niveles de humedad próximos a la saturación mayor 25%.

Obteniendo como resultado \(C_d = 1.0 \)

Coeficiente de transmisión de carga (\(J \)). De acuerdo a la Aashto, sugiere:

Tabla 9 Valores del coeficiente \(J \) de trasmisión de cargas.

<table>
<thead>
<tr>
<th>ARGÉN</th>
<th>FLEXIBLE</th>
<th>DE CONCRETO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPOSITIVOS DE TRASMISIÓN DE CARGAS</td>
<td>SI</td>
<td>NO</td>
</tr>
<tr>
<td>Tipo de Pavimento</td>
<td>1. En masa armado con juntas</td>
<td>3.2</td>
</tr>
<tr>
<td>2. Armado continuo</td>
<td>2.9</td>
<td>3.2</td>
</tr>
</tbody>
</table>

El valor del coeficiente de trasmisión de carga, seleccionado corresponde a \(J = 3.2 \).

Módulo de elasticidad \(E_c \) del concreto: El módulo de rotura se toma de acuerdo con las características de los materiales, pero se asumirá un módulo de rotura de 4,2 MPa

Tabla 10. Correlación entre la resistencia a la compresión y el módulo de rotura.

<table>
<thead>
<tr>
<th>Tipo de Agregado</th>
<th>Módulo de Elasticidad, (E_c) MPa</th>
<th>kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grueso igneo</td>
<td>5,500 (°C)0.5</td>
<td>17,500 (°C)0.5</td>
</tr>
<tr>
<td>Grueso metamórfico</td>
<td>4,700 (°C)0.5</td>
<td>15,000 (°C)0.5</td>
</tr>
<tr>
<td>Grueso sedimentario</td>
<td>3,600 (°C)0.5</td>
<td>11,500 (°C)0.5</td>
</tr>
<tr>
<td>Sin información</td>
<td>3,900 (°C)0.5</td>
<td>12,500 (°C)0.5</td>
</tr>
</tbody>
</table>

Determinación del módulo de reacción de la Subrasante “\(K \)” de la superficie en la que se apoya el pavimento.
El estudio geotécnico arrojó CBR entre 5.62%, ver tabla resumen estudio geotécnico. Se correlaciona el CBR y el módulo de reacción de la superficie de apoyo del pavimento y se determina el módulo de reacción de subrasante obtenido: K =48.6 MPa, equivalentes a K= 179,03 pci.

<table>
<thead>
<tr>
<th>CBR</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>8</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>k (pci)</td>
<td>100</td>
<td>120</td>
<td>140</td>
<td>175</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>k (Mpa/m)</td>
<td>27</td>
<td>33</td>
<td>38</td>
<td>47</td>
<td>54</td>
<td>68</td>
</tr>
<tr>
<td>k (Tn/m³)</td>
<td>2.768</td>
<td>3.322</td>
<td>3.875</td>
<td>4.844</td>
<td>5.536</td>
<td>6.920</td>
</tr>
</tbody>
</table>

La obtención de este valor se realiza por medio de una interpolación lineal

Se realiza el cálculo del Kc.
Kc =60.94 MPa, equivalentes a K=224.48 pci, aproximadamente. El cual se obtiene mediante el siguiente software de BS-PCAA en el cual se puede obtener el Kc usando material de Subbase granular y Subbase estabilizada con cemento.

Tabla II Cálculo del Kc

5.5 Resumen de resultados

De acuerdo con los datos anteriores se determinará el espesor de la placa mediante la utilización de la siguiente tabla, el cual lleva incorporada la fórmula de la AASHTO 93.
Tabla 12 Datos de entrada para los software de diseño y cálculo de espesores

<table>
<thead>
<tr>
<th>DATOS OBTENIDOS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Numero de Ejes Equivalentes</td>
<td>W18</td>
<td>4.197.637</td>
</tr>
<tr>
<td>Confiabilidad</td>
<td>R%</td>
<td>85</td>
</tr>
<tr>
<td>Desviación Normal de R</td>
<td>ZR</td>
<td>-0.8416</td>
</tr>
<tr>
<td>Desviación Estándar</td>
<td>So</td>
<td>0.35</td>
</tr>
<tr>
<td>Periodo de diseño</td>
<td>Años</td>
<td>20</td>
</tr>
<tr>
<td>Serviciabilidad inicial</td>
<td>pi</td>
<td>4.5</td>
</tr>
<tr>
<td>Serviciabilidad final</td>
<td>pt</td>
<td>2</td>
</tr>
<tr>
<td>Módulo de rotura</td>
<td>MR (MPa)</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>MR (PSI)</td>
<td>609.15</td>
</tr>
<tr>
<td>Coeficiente de Drenaje</td>
<td>Cd</td>
<td>1.0</td>
</tr>
<tr>
<td>Coeficiente de transferencia de Carga</td>
<td>J</td>
<td>3.2</td>
</tr>
<tr>
<td>Módulo de Reacción de la Subrasante</td>
<td>K (PCI)</td>
<td>60.94</td>
</tr>
<tr>
<td>Módulo de Elasticidad del Concreto</td>
<td>Ec (MPa)</td>
<td>28000</td>
</tr>
<tr>
<td></td>
<td>Ec (PSI)</td>
<td>4061056.65</td>
</tr>
</tbody>
</table>

CALCULO DEL ESPESOR DE LOSAS MEDIANTE EL USO DE LA SOFTWARE

Obtenidos los resultados de los parámetros, se procede al diseño de la estructura de pavimento rígido por el método AASHTO-93 por medio del programa AASHTO-93 y BS-PCAA, con el fin de encontrar el espesor de la losa de concreto.

![Ecuación AASHTO 93](image)

Para el programa Aashto 93, se obtiene un espesor de losa de 8.4”, lo que es igual a 21.33 cm, por lo que se aproxima a 22 cm.
En el programa BS-PCAA, se obtiene un espesor de losa de 22.0021 cm, por lo que se aproxima a 22 cm. El resultado final mediante la metodología AASTHO obtenemos un diseño de estructura conformada por una capa de base granular de 20 centímetros y un espesor de losa de 8.66 pulgadas o 22 centímetros y un módulo de rotura de concreto de 4.2 MPa.

Debido a que el espesor para el diseño de la carpeta en concreto tiene una variación de 1 cm en los programas usados, se procede a evaluar el consumo por erosión y el consumo por fatiga con cada uno de los espesores obtenidos. Estos consumos se obtienen mediante el método PCA, en el cual se evalúa el espesor de la carpeta con respecto a los consumos mencionados anteriormente.

Para el espesor de 21 cm se obtienen los siguientes consumos:
Para el espesor de 22 cm se obtienen los siguientes consumos:

Por el método PCA, se puede comprobar que los dos espesores cumplen en los parámetros de consumo que deben ser menores al 100%.

Realizando un análisis de sensibilidad en cuanto al esfuerzo y a la erosión variando los espesores de la losa por medio del método PCA, se puede comprobar que el espesor de 18 cm no cumple en cuanto al consumo por esfuerzo ya que sobrepasa el 100%.
Con un espesor de 19 cm se puede obtener unos consumos que no pasan del 100% por lo cual cumpliría según el método PCA.

En cuanto a la selección del espesor de losa se determina que el espesor de 19 cm cumple satisfactoriamente estos criterios y en la parte económica también resulta ser más económico, por lo cual se opta por escoger este espesor de losa.

DISEÑO DE JUNTAS PARA LA PLACA EN CONCRETO.

Sellado de las juntas: Las ranuras entre las juntas deben sellarse, tanto para impedir la entrada de agua a la sub-rasante como para evitar la penetración de cuerpos extraños dentro de la junta, que pueden obstaculizar su normal funcionamiento. Adicionalmente, el sello mejora la calidad del rodamiento.
Los sellos aplicados en caliente están regulados por la especificación ASTM D 1190-64. Para este proyecto se utilizará un sello sintético elastómero tipo SIKA del mercado.

JUNTA LONGITUDINAL: El papel principal de la junta longitudinal es controlar el agrietamiento producido por el labeo. Cuando existe confinamiento lateral del pavimento por ejemplo los sardineles existentes, no es necesario colocar barras de anclaje ya que dicho confinamiento es suficiente para mantener cerrada la junta y asegura la eficiencia de la trabazón de agregados. Pero se recomienda colocar refuerzo corrugado de 5/8” longitud 100 cm. Cada 120 cm. de espaciamiento

Tabla 13 Recomendaciones sobre varillas

<table>
<thead>
<tr>
<th>Espesor (mm)</th>
<th>varillas de 1/2”</th>
<th>Separación entre centros (cm)</th>
<th>varillas de 5/8”</th>
<th>Separación entre centros (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1,20</td>
<td>1,20</td>
<td>1,20</td>
<td>1,20</td>
</tr>
<tr>
<td>175</td>
<td>1,20</td>
<td>1,20</td>
<td>1,20</td>
<td>1,20</td>
</tr>
<tr>
<td>200</td>
<td>1,20</td>
<td>1,20</td>
<td>1,20</td>
<td>1,20</td>
</tr>
<tr>
<td>225</td>
<td>1,20</td>
<td>1,20</td>
<td>1,20</td>
<td>1,20</td>
</tr>
<tr>
<td>250</td>
<td>1,20</td>
<td>1,15</td>
<td>1,20</td>
<td>1,20</td>
</tr>
</tbody>
</table>

No se deben colocar varillas de anclaje a menos de 35 cm de la junta transversal

JUNTAS TRANSVERSALES: Las juntas transversales, pueden ser de construcción, expansión alabeo o construcción. Normalmente las de construcción funcionan también como juntas de alabeo y de expansión. La separación normal de entre juntas varía entre 4.5 y 7m, Cuando el concreto se fabrica con agregados redondeados de río debe usarse menor distancia entre juntas, ocurriendo lo contrario cuando se emplean agregados triturados.

Para el caso que el concreto se compone de Grava de ¾” triturada nos daría un espaciamiento de 4.5m. Por lo tanto, las placas se construirán máximo de 4.5m de ancho por una longitud de 4.5 metros.

La junta Transversal de contracción se construirá de acuerdo a las recomendaciones de PCA con pasador liso de 1” (para espesores entre 19-20 cms), la mitad engrasada de una longitud total de 35cms y espaciada cada 30cms.
La Tabla 14 dimensiones mínimas de los pasadores de carga PCA (1975) muestra las dimensiones mínimas de los pasadores de carga PCA (1975).

<table>
<thead>
<tr>
<th>Espesor del pavimento (mm)</th>
<th>diámetro del pasador * (mm)</th>
<th>longitud (mm)</th>
<th>separación entre centros (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-180</td>
<td>22.2</td>
<td>7/8</td>
<td>350</td>
</tr>
<tr>
<td>190-200</td>
<td>25.4</td>
<td>1</td>
<td>350</td>
</tr>
<tr>
<td>210-230</td>
<td>28.6</td>
<td>1 1/8</td>
<td>400</td>
</tr>
<tr>
<td>240-250</td>
<td>31.8</td>
<td>1 1/4</td>
<td>450</td>
</tr>
<tr>
<td>260-280</td>
<td>34.9</td>
<td>1 3/8</td>
<td>450</td>
</tr>
<tr>
<td>290-300</td>
<td>38.1</td>
<td>1 1/2</td>
<td>500</td>
</tr>
</tbody>
</table>

El espaciamiento entre las juntas transversales debe estar comprendido entre 3,60 y 5,0 m y la relación entre el largo y ancho de las losas debe oscilar entre 1 y 1,3. Como recomendación general, las losas que sean lo más cuadradas posible, tendrán un mejor comportamiento estructural.

JUNTAS DE EXPANSION

Las juntas de expansión contra estructuras fijas como sardineles se utilizarán la junta de expansión tipo 2 recomendadas por ICPC.

MODULACION DE LOSAS:

Sector ancho de vía = 7,0m, tenemos ancho de carril = 3,5 m
Factor esbeltez: Relación dimensión mayor / dimensión menor, debe estar en el rango de: 1,0 – 1,4 y el espaciamiento máximo entre 4,5 a 6 metros
Suponiendo un espaciamiento de juntas transversales de 3,5 m (lado mayor) y 3,5 m (lado menor) tenemos:

3,5 / 3,5 = 1,0, con lo cual cumpliría con este parámetro.

La dimensión mayor (La) debe ser menor que 24 veces el espesor.

Para este caso e = 16 cms y lado mayor de 3,5 m.

24 veces x 22 cms = 528 cms, lo que equivale a 5,28 m lo cual es mayor a 3,5 M.

Se propone una modulación de losas cuadradas de 3,5 m de ancho por 3,5 m de largo.
6. CONCLUSIONES

Los pavimentos son estructuras diseñadas para la comunicación terrestre, formada por una o varias capas de materiales seleccionados que reciben de forma directa las cargas del tránsito y las transmiten a los estratos inferiores en forma disipada, proporcionando así una capa de rodadura eficiente para su funcionabilidad.

De acuerdo al espesor de 21 cm que se obtuvo del programa AASHTO 93, y la comparación con el software BS-PCAA que arrojo un espesor de 22 cm, se verificaron otros espesores mínimos que cumplieran con los consumos de esfuerzo por fatiga y erosión, obteniendo así una losa de 19 cm de espesor que cumplió satisfactoriamente estos criterios, siendo así, se obtuvo una propuesta de diseño de pavimento rígido para la calle 7 entre carrera 7 y 5 del municipio de puerto López meta.

Espesor de losa 19cm
Capa Subbase granular de 20cm
Módulo de Rotura 4.2 MPa.
7. RECOMENDACIONES

Antes de dar inicio a las labores de pavimentación, se debe tener presente a importancia de la implementación de un plan de manejo de tránsito, con el fin de generar el menor traumatismo posible a la población.

En el caso de que hubiere lugar a reparación de instalaciones hidráulicas o sanitarias se deberán realizar previamente a la pavimentación.

Se deberá usar concreto de muy buena calidad, debidamente certificado que cumpla con los estándares técnicos y módulo de rotura.

En el caso de presentarse fallos en el terreno natural se recomienda realizar la excavación y remplazo de material defectuoso con el material de buenas características como material tipo afirmado. De requerirse, se puede contemplar la instalación de un producto geo-sintético (geotextil tejido referencia T2400 o 3*3 HF o el equivalente de estos en el mercado) el cual debe cumplir con la normatividad vigente INVIAS 2013. este producto debe instalar en las áreas en donde se va a intervenir para separar, estabilizar y evitar que se refleje los cambios volumétricos del suelo natural.

Por ser una vía en una zona urbana se debe de garantizar la evacuación pronta del agua superficial, por esta razón se requiere la construcción de drenajes superficiales, y/o sumideros.

No se debe de aplicar agua al concreto para ayudar a la terminación de su superficie.
8. BIBLIOGRAFÍA

INVÍAS. (2013).

pavimentos, b. (6 de Diciembre de 2010). blog pavimentos. Obtenido de http://libropavimentos.blogspot.com/search/label/INTRODUCCI%C3%93N%20Y%20DESARROLLO%20DEL%20M%C3%A9TODO%20DE%20DISE%C3%93N%20%20AASHTO%20%2093

Peter Berry, D. R. (s.f.). Mecanica de suelos. Mecanica de suelos.

