MODELO PARA LA PROGRAMACIÓN DE VEHÍCULOS EN UNA EMPRESA DE TRANSPORTE

NICOLÁS BERNAL LÓPEZ

Trabajo de grado presentado como requisito para optar al título de:

Magíster en logística integral

Director:

KAREN YINETH NIÑO MORA, PhD

UNIVERSIDAD MILITAR NUEVA GRANADA

FACULTAD DE INGENIERIA

PROGRAMA MAESTRÍA EN LOGISTICA INTEGRAL

BOGOTÁ, OCTUBRE 2019

Tabla de contenido

1.	Iı	ntroducción	5
2.	C	Caracterización	8
2.	1.	Aspectos generales de la empresa	8
2.2	2.	Características de los servicios	9
2.3	3.	Características de los vehículos	13
3.	D	Definición del problema	14
3.	1.	Transporte terrestre en Colombia	14
3.2	2.	Formulación del problema	16
3	3.	Justificación	17
4.	O	Objetivos	19
4.	1.	Objetivo general	19
4.	2.	Objetivos específicos	19
4.	3.	Alcance	19
5.	A	antecedentes y revisión de literatura	20
6.	P	Propuesta	27
6.	1.	Caracterización del caso de estudio.	28
6.2	2.	Modelo Matemático	34
6	3.	Escenarios	36
	62		27
	U. 3	.1. Escenario 1	31
	6.3		
7.	6.3		37
7.	6.3 R	2.2. Escenario 2	.37 . 38
7.	6.3 R	2.2. Escenario 2	.37 .38
7. 7.	6.3 R 1.	Análisis de los resultados	.37 .38 .52
7. 7. 8.	6.3 R 1.	Análisis de los resultados Recomendaciones	.37 .38 .52 .59

Listado de tablas

Tabla 1. Cantidad de viajes por trimestre.	10
Tabla 2. Cantidad de viajes por origen.	
Tabla 3. Cantidad de viajes por destino.	
Tabla 4. Principales tipos de mercancía	
Tabla 5. Distancia en kilómetros entre ciudades.	
Tabla 6. Tiempo en días del recorrido entre ciudades.	
Tabla 7. Comparación escenario 1 vs escenario 2	
Listado de ilustraciones	
Ilustración 1. Origen de viajes 2018	28
Ilustración 2. Destino de viajes 2018.	
Ilustración 3. Vehículos utilizados escenario 0	31
Ilustración 4. Costo mensual escenario 0	31
Ilustración 5. Vehículos utilizados con origen Bogotá escenario 0	32
Ilustración 6. Origen viajes realizados por vehículos propios escenario 0	33
Ilustración 7. Vehículos utilizados en fin de semana escenario 0	
Ilustración 8. Programación mes de enero escenario 0, 1,2	40
Ilustración 9. Programación mes de febrero escenario 0, 1,2	
Ilustración 10. Programación mes de marzo escenario 0, 1,2	42
Ilustración 11. Programación mes de abril escenario 0, 1,2	43
Ilustración 12. Programación mes de mayo escenario 0, 1,2	44
Ilustración 13. Programación mes de junio escenario 0, 1,2	
Ilustración 14. Programación mes de julio escenario 0, 1,2.	46
Ilustración 15. Programación mes de agosto escenario 0, 1,2.	
Ilustración 16. Programación mes de septiembre escenario 0, 1,2.	
Ilustración 17. Programación mes de octubre escenario 0, 1,2	
Ilustración 18. Programación mes de noviembre escenario 0, 1,2	
Ilustración 19. Programación mes de diciembre escenario 0, 1,2	
Ilustración 20. Costo escenario 0 vs 1 vs 2.	
Ilustración 21. Porcentaje ahorrado mensualmente escenario 1.	53
Ilustración 22. Vehículos utilizados escenario 1.	
Ilustración 23. Vehículos utilizados con origen Bogotá escenario1	
Ilustración 24. Origen viajes realizados por vehículos propios escenario 1	
Ilustración 25. Vehículos utilizados en fin de semana escenario 1	
Ilustración 26. Porcentaje costo ahorrado mensualmente escenario 2	
Ilustración 27. Vehículos utilizados escenario 2.	
Ilustración 28. Vehículos utilizados con origen Bogotá escenario 2	
Ilustración 29. Origen viajes realizados por vehículos propios escenario 2	
Ilustración 30. Vehículos utilizados en fin de semana escenario 2	59

Listado de anexos

	Anexos A. Tabla de costos entre rutas año 2018.	. 69
	Anexos B. Listado viajes primer cuatrimestre de 2018 con el tipo de vehículo usado	.70
	Anexos C. Listado viajes segundo cuatrimestre de 2018 con el tipo de vehículo usado.	.71
	Anexos D. Listado viajes tercer cuatrimestre de 2018 con el tipo de vehículo usado	.72
	Anexos E. Listado viajes primer cuatrimestre de 2018 con los posibles vehículos a us	sar.
•		.73
	Anexos F. Listado viajes segundo cuatrimestre de 2018 con los posibles vehículos a us	sar.
•		
	Anexos G. Listado viajes tercer cuatrimestre de 2018 con los posibles vehículos a us	sar.
		.75
	Anexos H. Resultado GAMS escenario 1 y 2 mes de enero de 2018	.76
	Anexos I. Resultado GAMS escenario 1 y 2 mes de febrero de 2018	
	Anexos J. Resultado GAMS escenario 1 y 2 mes de marzo de 2018.	.78
	Anexos K. Resultado GAMS escenario 1 y 2 mes de abril de 2018.	
	Anexos L. Resultado GAMS escenario 1 y 2 mes de mayo de 2018	. 80
	Anexos M. Resultado GAMS escenario 1 y 2 mes de junio de 2018	
	Anexos N. Resultado GAMS escenario 1 y 2 mes de julio de 2018.	
	Anexos O. Resultado GAMS escenario 1 y 2 mes de agosto de 2018.	.83
	Anexos P. Resultado GAMS escenario 1 y 2 mes de septiembre de 2018	
	Anexos Q. Resultado GAMS escenario 1 y 2 mes de octubre de 2018	
	Anexos R. Resultado GAMS escenario 1 y 2 mes de noviembre de 2018	
	Anexos S. Resultado GAMS escenario 1 y 2 mes de diciembre de 2018	. 87

1. Introducción

En el mundo, el transporte desempeña un eslabón fundamental en el mantenimiento y continuo crecimiento del comercio, pero la tecnología ha empezado a revolucionar la manera cómo funcionan las empresas en este sector, por este motivo ha iniciado una competencia para ofrecer a los clientes un mejor servicio garantizando un costo más bajo (Maria Lazarte, Barnaby Lewis, Clare Naden, 2017).

Actualmente en Colombia, el transporte es uno de los sectores más influyentes, en 2018 generó una dinámica de crecimiento del 3.1% con respecto al año anterior según ANDI (2019), causando un aumento del 7.5% en la cantidad de nuevas empresas oferentes en el sector (CONFECAMARAS, 2018), dando a los clientes una gran variedad de opciones para solucionar sus necesidades.

A pesar del crecimiento de este sector, se siguen presentando los mismos problemas de años anteriores, los costos operativos son muy altos causados principalmente por el costo del combustible (32% de los costos operativos), los fletes elevados que se encuentran entre los más altos de América Latina y la competencia frente a otros medios de transporte que surgen (Revista semana, 2017). Adicionalmente, el sector presenta una sobre oferta en el parque automotor, razón por la cual algunas empresas han tenido que mantener sus ofertas sobre los costos operativos, generando pérdidas a la industria en el país (Editorial La República, S. A. S, 2017). Se puede concluir que en la medida que el sector crece sus problemáticas también lo hacen, razón por la cual una buena administración logística de los recursos con los que cuenta una empresa puede ser la diferencia para seguir en el mercado (Ballesteros Riveros & Ballesteros Silva, 2008).

Por otra parte, las pequeñas y medianas empresas deben competir con los mismos problemas descritos anteriormente y además centrar sus esfuerzos en ofrecer mejores alternativas para subsistir frente a grandes empresas que cuentan con un capital y flota de vehículos que los superan en grandes proporciones (ANIF, 2019); por este motivo se vuelve tan importante la implementación de modelos que logren generar una mayor

rentabilidad en estas empresas del sector. En efecto, unas mejores prácticas en la gestión logística permiten adoptar gran variedad de estrategias que pueden implementarse para lograr la minimización de costos (Guerrero González, 2012), así mismo se debe trabajar en la gerencia del conocimiento para afrontar de una mejor manera los cambios futuros que vengan en el sector (Bernal Torres, Frost González, & Sierra Arango, 2014).

Dentro de este marco, la programación lineal desde hace varios años ha adquirido importancia dentro de las empresas, debido a que un gran número de problemas con diferentes características pueden ser modelados en este tipo de programación. Adicionalmente, gracias al avance tecnológico con el que contamos actualmente este tipo de problemas pueden ser solucionados de manera rápida (M. Mocholu Arce & R. Sala Garrido, 1993). De ahí que Tamannaei & Rasti-Barzoki (2019) plantea un modelo de programación lineal donde su función objetivo es la minimización de la suma total de los costos de viaje de los vehículos, los costos de arreglo de los vehículos y el total de los costos por los envíos tardíos, obteniendo resultados más eficientes frente a otros tipos de programación.

Así mismo Toro-Ocampo, Franco-Baquero, & Gallego-Rendón (2016) efectúa una propuesta de minimización de costos por medio de programación lineal, sobre el problema de localización y ruteo con restricción de capacidades, donde incluye la posibilidad de subcontratar vehículos para que cumplan con algunas rutas cuando los vehículos propios son insuficientes, resolviendo problemas con 50 clientes de forma exacta.

A partir de lo expuesto anteriormente, se hace evidente la necesidad de implementar modelos matemáticos para la reducción de costos en las empresas de transporte. Por consiguiente, el propósito del presente trabajo es proponer un modelo de programación lineal para la minimización de costos, que tenga en cuenta las características que presenta una empresa del sector transporte en Colombia. Realizando una investigación aplicada, para generar métodos dirigidos al sector

económico de servicios, con el fin de mejorar y hacerlo más eficiente (UNAD Universidad Nacional Abierta y a Distancia., 2014), adquiriendo un nivel de conocimiento explicativo (Fernández Alarcón, 2006), se toma como base los registros históricos de la empresa de transportes del 2018, de manera no experimental, debido a que se obtuvieron de forma independiente y sin ninguna intervención (Gabriel Agudelo, Miguel Aigneren, Jaime Ruiz, 2014). Por último, se utiliza un método cuantitativo, el cual está orientado a buscar los mejores resultados. El modelo se caracteriza como un problema de programación de vehículos (*VSP –Vehicle Scheduling Problem*). Este modelo se desarrolla en dicha empresa, donde se analizan los costos pagados en la asignación de sus vehículos propios y alquilados para la ejecución del 100% de los transportes programados en un año.

El modelo de programación lineal resultado de este trabajo tiene como objetivo brindar una herramienta real, rápida y confiable que se ajuste a las necesidades de la empresa para la programación de vehículos a nivel nacional, minimizando los costos operativos en los que debe incurrir. Adicionalmente fue validada bajo parámetros y características reales que mostraron resultados competitivos frente a la planeación actual que hace la empresa.

El siguiente documento está estructurado en capítulos, encontrando en el capítulo 2 las características de la empresa del caso de estudio, la manera en que realizan su operación y los datos históricos de ésta. En el capítulo 3 se analiza el estado actual del transporte terrestre en Colombia, cuáles han sido las mejoras propuestas en los últimos años para éste, la definición y justificación del problema, mostrando las necesidades reales de este tipo de empresas actualmente. En el capítulo 4 se encontrarán los objetivos de este trabajo y cuál fue la metodología implementada. En el capítulo 5 está la revisión literaria que se realizó antes de plantear el método de solución del problema, tomando en cuenta los tipos de VRP (vehicle routing problem) que ofrece la literatura en este momento y las variaciones que existen, teniendo en cuenta el VSP. El capítulo 6 muestra los datos de la empresa que tomamos para realizar el modelo, el modelo propuesto y los dos escenarios evaluados. En el capítulo

7 se encuentran los resultados obtenidos de manera gráfica mes a mes y con un análisis anual de todos los datos. El capítulo 8 tiene algunas recomendaciones para la empresa basados en los resultados obtenidos. Por último, en el capítulo 9 se encuentran las conclusiones de los resultados obtenidos y el trabajo futuro en base a este documento.

2. Caracterización

A lo largo de este capítulo, se describirán las características de la empresa de transporte en la cual se realizó el caso de estudio, cómo manejan la operación de sus servicios, la cantidad y características de vehículos con los que cuenta actualmente, además del histórico de viajes que ha realizado desde su creación.

2.1. Aspectos generales de la empresa

La empresa de transportes del caso de estudio tiene cerca de 8 años en el mercado nacional, cuenta con una única sede ubicada en Bogotá, Colombia, desde la cual controla el movimiento de mercancía desde y hacia gran cantidad de ciudades en el país, garantizando un alto cumplimiento en sus servicios. Actualmente su operación es realizada con tres vehículos de su propiedad y más de 15 vehículos alquilados a sus contratistas.

Inicialmente esta empresa dedicaba su operación al movimiento de mudanzas, pero la creciente competencia generó que ampliaran la cantidad de actividades para satisfacer a los clientes; por esta razón, adicionó a su portafolio de servicios el transporte de mercancía masiva, herramientas, componentes de avión y automóviles, esto llevó a un incremento en la cantidad de viajes mensual del 83.4% en los últimos 2 años.

2.2. Características de los servicios

Todos los servicios de la empresa se manejan de forma programada, se ofrece un servicio expreso el cual consiste en cargar un vehículo únicamente con la mercancía de un cliente e iniciar el transporte inmediatamente a su destino final, dependiendo de las necesidades del cliente se asigna uno de los dos tipos de vehículos disponibles por la empresa.

Para los trayectos entre ciudades con distancias en un rango de 600 kilómetros se realizan las entregas de un día para otro (dependiendo la hora en que finaliza el cargue) mientras que para recorridos de mayor distancia se realiza la entrega al segundo día después del cargue. Estos tiempos también dependen del día y la hora en la que arribe el vehículo a destino, ya que si son mudanzas en los conjuntos residenciales no es posible el ingreso en horario nocturno ni en días festivos, mientras que si es mercancía masiva, herramientas o componentes de avión son recibidos en el momento de la llegada, sin importar la hora, en estos casos el tiempo de recorrido se reduce debido a que una vez descargado el vehículo a primera hora puede iniciar un nuevo trayecto ese mismo día.

Cuando un vehículo propiedad de la empresa realiza un recorrido desde Bogotá hacia otra ciudad y no se cuenta con algún servicio programado que parta desde el lugar final del vehículo en el siguiente día, el camión debe buscar carga en otras empresas, de no encontrar debe retornar vacío para Bogotá, esto con el fin de no aumentar los costos de manutención del conductor, de parqueadero del vehículo y para estar disponible nuevamente en Bogotá lo antes posible.

Cuando los servicios inician en ciudades distintas a Bogotá, generalmente se recurre a vehículos alquilados, y en la mayoría de las ocasiones se encuentran los vehículos disponibles para realizar el servicio en estas ciudades, pero en otras oportunidades se debe enviar un vehículo propio desde Bogotá vacío para cumplir con el requerimiento del cliente, el costo del desplazamiento vacío debe ser asumido por la empresa.

También existen servicios especiales, donde un vehículo está reservado para un viaje específico por algún requerimiento especial del cliente, estos servicios son programados primero para así garantizar la disponibilidad del vehículo requerido.

La empresa inició su funcionamiento y genera los manifiestos de carga a través del RNDC (Registro Nacional de Carga) desde finales del 2015. En la tabla 1 se observa la cantidad de viajes que han realizado desde el inicio de sus operaciones hasta el 31 de diciembre del 2018. Lo anterior evidencia un aumento en los viajes realizados por la empresa lo cual demanda una programación más compleja.

Tabla 1. Cantidad de viajes por trimestre.

FECHA 💌	TOTAL VIAJES
□ 2015	37
≣ Trim.4	37
■2016	250
≡ Trim.1	58
≡ Trim.2	63
≡ Trim.3	68
☐ Trim.4	61
■ 2017	311
E Trim.1	75
≡ Trim.2	83
≡ Trim.3	83
≡ Trim.4	70
□2018	441
E Trim.1	85
≡ Trim.2	109
E Trim.3	121
≡ Trim.4	126
Total general	1039

Fuente: elaboración propia a partir de información concedida por la empresa.

Así mismo, al analizar más en detalle los viajes, se encuentra que la mayor cantidad de viajes tienen como origen las ciudades de Bogotá, Rionegro y Medellín, mientras que los principales destinos son las ciudades de Rionegro, Bogotá y Cali como se muestra en las tablas 2 y 3, respectivamente.

Tabla 2. Cantidad de viajes por origen.

ORIGEN 🚽	TOTAL VIAJES				
BOGOTA	570				
RIONEGRO	217				
MEDELLIN	47				
CALI	40				
BARRANQUILLA	39				
CARTAGENA	36				
IBAGUE	15				
CUCUTA	12				
BUCARAMANGA	11				
TUNJA	6				
SANTA MARTA	5				
PEREIRA	4				
VILLAVICENCIO	4				
CHIA	3				
DUITAMA	3				
MANIZALES	2				
ARMENIA	2				
PASTO	2				
VALLEDUPAR	2				
TULUA	2				
CLEMENCIA	1				
CURUMANI	1				
RIOHACHA	1				
MADRID	1				
CALDAS	1				
FUSAGASUGA	1				
RESTREPO	1				
SUAZA	1				
CALARCA	1				
FLORIDABLANCA	1				
JAMUNDI	1				
NEIVA	1				
DOSQUEBRADAS	1				
FACATATIVA	1				
MARINILLA	1				
GIRARDOT	1				
GIRARDOT	1				
Total general	1039				

Fuente: elaboración propia a partir de información concedida por la empresa.

Tabla 3. Cantidad de viajes por destino.

DESTINO 🚽	TOTAL VIAJES				
RIONEGRO	384				
BOGOTA	309				
CALI	79				
BARRANQUILLA	62				
MEDELLIN	53				
CARTAGENA	29				
BUCARAMANGA	19				
IBAGUE	18				
SANTA MARTA	13				
CUCUTA	8				
NEIVA	5				
VILLAVICENCIO	4				
MONTERIA	4				
MANIZALES	4				
CAJICA	4				
YOPAL	3				
PASTO	3				
ARMENIA	3				
CHIA	2				
VALLEDUPAR	2				
TULUA	2				
GIRARDOT	2				
LA CALERA	2				
POPAYAN	2				
DUITAMA	2				
PEREIRA	2				
CALDAS	1				
TUNJA	1				
FLORIDABLANCA	1				
LA CEJA	1				
GUATAPE	1				
MACEO	1				
PALMIRA	1				
PUERTO COLOMBIA	1				
TUMACO	1				
RIOHACHA	1				
VALENCIA CORDOBA	1				
FUSAGASUGA	1				
VILLA DEL ROSARIO	1				
SAHAGUN	1				
VILLETA	1				
BARRANCABERMEJA	1				
ZIPAQUIRA	1				
SOLEDAD	1				
FLORENCIA	1				
Total general	1039				
3					

Fuente: elaboración propia a partir de información concedida por la empresa.

En la tabla 4, se puede ver los 6 tipos de mercancía que más se han movido en los 1039 viajes realizados.

Tabla 4. Principales tipos de mercancía.

TIPO DE MERCANCIA	TOTAL VIAJES
COMPONENTES DE AVION	277
HERRAMIENTAS	192
MUEBLES Y ENSERES	173
AUTOMOVIL	80
MUEBLES Y ENSERES Y AUTOMOVIL	48
HERRAMIENTA	23

Fuente: elaboración propia a partir de información concedida por la empresa.

2.3. Características de los vehículos

La empresa maneja dos tipos de vehículos para realizar sus servicios, los vehículos turbo y los vehículos sencillos, estos vehículos se diferencian por dos cosas, la primera diferencia son sus capacidades de peso. Los tipos turbo tienen una capacidad máxima de 4.5 toneladas mientras que los tipos sencillos tienen capacidad de 8 toneladas, y la segunda diferencia es la capacidad de volumen de carga, los turbo tienen una capacidad de 30 mt3, y los sencillos tienen capacidad de 45 mt3.

La compañía cuenta con 3 vehículos propios (2 vehículos tipo turbo y un vehículo sencillo), estos vehículos generalmente se encuentran ubicados en la bodega de la empresa para reducir gastos como parqueadero o viáticos del conductor, es por esto, que en muchas ocasiones se debe contratar un vehículo externo para poder cumplir con las necesidades del cliente en otras ciudades. Esta contratación se realiza ubicando los contratistas que se encuentran activos en la base de datos de la empresa para corroborar si están disponibles en la ciudad que se necesitan, la inscripción de estos contratistas en la base de datos debe realizar mediante un procedimiento establecido por la empresa, donde se debe contar con fotografías del vehículos, los documentos tanto del conductor como del vehículo y el diligenciamiento de una hoja de vida, lo cual es algunos casos toma más tiempo de lo esperado.

3. Definición del problema

A lo largo de este capítulo, se abordan las características del transporte terrestre actualmente en Colombia, cuáles son las problemáticas que se han evidenciado y los estudios recientes realizados para empresas de este sector en el país. Así mismo, basado en las características de la empresa se identifican cuáles son los problemas que enfrenta actualmente y que también tiene el sector trasportador.

3.1. Transporte terrestre en Colombia

El desempeño logístico es un componente fundamental en la economía de un país, este índice permite analizar los tiempos y costos de movilizar los productos por medio del transporte en carretera, fluvial o aéreo. Colombia se encuentra en el puesto quinto en América Latina. El atraso en la infraestructura vial y las nuevas carreteras son una de las principales problemáticas, pero adicional a esto está la falta de seguimiento y localización de las mercancías, la baja calidad en los servicios logísticos y la dificultad para contratar envíos a precios competitivos. Actualmente en Colombia el 80% de los pedidos llegan a tiempo, el 57% son perfectos y el 73% de las entregas son a tiempo y completas, pero según los usuarios de los servicios logísticos en el país la principal barrera que impacta la logística son los altos costos de transporte (Ministerio de transporte, 2019). El sector de transporte carretero es el más utilizado en el país, cerca del 73% de la carga es transportada por este medio actualmente, por este motivo este sector es el que necesita mayor innovación y propuestas, el gobierno actualmente trabaja en la mejora continua de las carreteras lo cual ayuda a la reducción de tiempos y costos, pero esto no es suficiente motivo por el cual se empezaron a desarrollar políticas de desarrollo productivo, formulando planes logísticos en tres regiones del país, Caribe, Eje Cafetero y Pacifico (Ministerio de transporte, 2019). El 79,6% de las firmas en Colombia subcontratan el transporte de carga y la distribución de mercancías, es por esto que las empresas de transporte deben centrar sus atención en la reducción de los costos y el aumento de la calidad de los servicios, una de las recomendaciones que se fijan es la implementación de nuevas propuestas para la reducción de tiempos y costos logísticos, de esta manera ayudar a la mejora del sector transportador por carretera, así se puede garantizar que los fletes se generen en mejores condiciones de competencia (Ministerio de transporte, 2019).

Según Ministerio de Transporte (2014) y (2018) de 88.663 unidades de camiones registrados para el año 2010 se pasó a 266.270 unidades registradas para el 2017, mientras que los vehículos turbo pasaron de 67.909 unidades en 2010 a 193.734 unidades matriculadas en 2017. Lo que muestra el gran aumento que se ha venido presentando en este sector, estos dos tipos de vehículos ocupan el 42.5% del total de la flota de transportes de servicio público con la que cuenta el país.

Pero el aumento de la flota de transporte no es el principal problema, según Revista Dinero (2018) los costos son el mayor problema y el secreto para mantener a flote una empresa de transporte en la actualidad es mantener al margen los costos, lograr ahorros desde la administración, el combustible para los vehículos pesados ha venido incrementando su costo de manera elevada en los últimos años, de la misma manera que los salarios de los conductores y los seguros de carga que deben manejar estas empresas.

Adicionalmente el Departamento Nacional de Planeación (2018) encontró que en las micro empresas el porcentaje del costo logístico sobre las ventas es el doble del porcentaje de las empresas medianas y grandes, resaltando una gran importancia de implementar medidas que ayuden a identificar y reducir la ineficiencia en los proceso logísticos para este tipo de empresas.

Por otra parte, el país empieza a actualizarse en ciertos métodos basados en información en tiempo real, el sistema inteligente de transportes (ITS sus siglas en inglés), integra la información de múltiples sistemas y sensores para los usuarios de las vías y las autoridades para ayudar a minimizar problemas de transporte, este tipo de sistemas se están empezando a implementar mediante aplicaciones en algunas empresas, abriendo grandes posibilidades de implementación y mejoras para el sector

transportador (Banse, Herrera, Nunez, Navarro, & Chavarriaga, 2018). El concepto de Lean también empieza a incurrir en el transporte por carretera, muestra que implementando un objetivo para la empresa, la unificación de documentos, mejorar los recursos para el cargue y recargue de la mercancía, utilizar un GPS para analizar el tráfico en tiempo real y programar los envíos garantiza una disminución de los costos y tiempos de una empresa en este sector (Garza-Reyes et al., 2017).

Por otro lado, el medio ambiente se ha convertido en un pilar fundamental para la implementación de nuevas estrategias que reduzcan las emisiones de CO2, en Colombia el sector de transporte por carretera es el responsable del 44% del consumo de energéticos en el país, y se clasifica como el principal consumidor de los derivados del petróleo, por este motivo Castillo, Restrepo, Tibaquirá, & Quirama (2019) plantean estrategias para la eficiencia energética en vehículos livianos del transporte por carretera, donde la conducción eficiente genera una gran reducción del consumo de combustible en este tipo de vehículos.

Como complemento, Cecilia Briceño, Harry Moroz, & Julie Rozenberg (2015) se centra en que los altos costos de transporte en países como Colombia, es uno de los factores que más contribuyen para el distanciamiento de nuevos mercados tanto nacionales como internacionales. Sin embargo, en la actualidad los costos han perdido importancia en las investigaciones y se ha venido trabajando en otros temas como los mencionados anteriormente.

3.2. Formulación del problema

Con base en los numerales 2 y 3.1 de este documento, se identifica que el transporte terrestre de carga es la modalidad más utilizada en Colombia para el movimiento de mercancías, con cerca del 77.54% del total de toneladas movilizadas se realiza por este medio según CONPES (2019), lo que abre una gran oportunidad para implementar en este tipo de transporte nuevas alternativas en busca de reducir costos y aumentar la competitividad del país en términos logísticos.

A la afirmación anterior, se le suma el hecho de la administración empírica que maneja este sector en el país utilizada en gran mayoría de las pequeñas y medianas empresas actualmente. Donde la falta de planeación y la informalidad obligan a bajar el precio en la prestación de los servicios, causando pérdidas en algunas oportunidades. A su vez, se vuelve cada vez más común el incumplimiento en los requerimientos solicitados por los clientes, lo que genera grandes inconvenientes en las compañías contratantes y hace que el sector pierda clientes que buscan otras alternativas para el transporte de sus mercancías.

Finalmente, se plantea que un modelo de programación de vehículos permite a una empresa reducir sus costos y garantizar el cumplimiento de todos los servicios programados entretanto ayuda a la toma de decisiones frente a los recursos con los que cuenta la empresa, en cuanto a los vehículos propios y alquilados que necesita.

3.3. Justificación

El transporte de carga se encuentra en el corazón de nuestra vida económica, representa una parte importante en el desarrollo sostenible del país, por esto las empresas dedicadas a prestar este tipo de servicio contribuyen a mejorar la calidad de vida de las personas, la mayoría de las industrias y las actividades económicas se basan en la distribución de bienes (La Asociación de Plan Regional, 2016).

Por otra parte, las empresas dedicadas al transporte de carga trabajan con el objetivo de lograr una rentabilidad y mantenerse en el mercado. Dicha rentabilidad requiere una buena gestión del transporte, esto permite que las empresas se mantengan en el competitivo mercado de hoy. Por esta razón, se debe implementar una adecuada administración basada en el incremento de los envíos, la reducción de los costos de transporte y en promover un mejor servicio al cliente (Zonalogistica, 2017).

La afirmación anterior nos centra en que una manera de generar una mejora importante en una empresa de transporte en Colombia es reduciendo sus costos, debemos resaltar que en el último informe del DANE (2019) de los costos de transporte de carga por carretera el 40.2% corresponde al combustible, el 9.79% a los insumos de operación, 45.19 % para los costos fijos y peajes y el 4.81% las partes, piezas, servicios de mantenimiento y de reparación. La única manera de poder manejar estos costos es mediante una planeación de transporte, la cual permite optimizar los planes de transporte de una empresa, por medio de la selección del tipo de vehículo que se debe utilizar y el manejo de los tiempos de ingreso y salida de los vehículos, todo esto cubriendo las necesidades específicas de la empresa para bajar los costos y mejorar el servicio al cliente (Francisco Muñoz & logisticamx, 2015).

En base a lo anterior, se encuentra que la programación lineal desde hace varios años ha adquirido importancia dentro de las empresas, debido a que un gran número de problemas con diferentes características puede ser modelados en este tipo de programación (M. Mocholu Arce & R. Sala Garrido, 1993), y es que la programación lineal puede ser aplicada a una gran variedad de campos de estudio, algunas industrias utilizan los modelos de programación lineal para su producción, telecomunicaciones, energía o transporte (Fagoyinbo, Akinbo, Ajibode, & Olaniran, 2004), De esta manera, se puede ver que estos modelos de programación proporcionan herramientas de planificación que pueden ser de gran ayuda para tomar decisiones en cuanto a la gestión de ruta de la flota de transporte.

Tradicionalmente, las empresas de transporte han sido manejadas mediante el juicio y la experiencia de sus gerentes para la programación de sus servicios, hoy en día el desarrollo de diferentes métodos basados en el desarrollo y análisis matemáticos son una herramienta de gran importancia para complementar la experiencia en este tipo de empresas, de esta manera mejorar el aprovechamiento de los recursos y disminuir los costos operacionales que se están generando actualmente, de la optimización de muchos problemas resulta una mejor planeación y ejecución (Tang, Liu, Wang, Sun, & Kandil, 2018).

4. Objetivos

4.1. Objetivo general

Desarrollar un modelo para la programación de vehículos en una empresa de transporte nacional, con el objetivo de minimizar los costos operativos.

4.2. Objetivos específicos

- Realizar una revisión sobre el estado actual del sector transportador a nivel nacional con el fin de identificar características y necesidades actuales.
- Realizar una revisión sobre los modelos actuales propuestos para las empresas de transporte, que tengan como finalidad la reducción de costos operativos.
- Desarrollar un modelo de programación de vehículos teniendo en cuenta las características actuales de la empresa, el análisis del sector y el modelo que más se acerque a las necesidades y características de la empresa.
- Validar la efectividad del modelo desarrollado a través de pruebas computacionales y un caso de estudio para evaluar su pertinencia en la toma de decisiones para la programación de vehículos.

4.3. Alcance

El desarrollo del modelo de programación de vehículos se desarrolla con base en la información de un caso aplicado, el cual refiere a una empresa de transporte a nivel nacional, la cual se encuentra ubicada en Bogotá, Colombia. El modelo se ajusta tomando los datos reales de los transportes realizados en los doce meses del año 2018 por la empresa incluyendo rutas realizadas, costos de operación, tiempo de recorridos, y tipo de vehículos utilizados.

Respecto a los aspectos puntuales, la compañía cuenta con tres (3) vehículos propios, de los cuales uno es tipo sencillo y dos vehículos tipo turbo. Las restricciones comprendidas en la modelación competen a las características de los vehículos que requieren los clientes para la realización de los servicios, a la disponibilidad de los vehículos propios y de los vehículos alquilados, a los tiempos estándar que se manejan por cada recorrido, a los costos establecidos que maneja la empresa y a la necesidad del retorno de los vehículos propios una vez terminados los recorridos en otras ciudades para minimizar los costos de viáticos y así garantizar la disponibilidad en Bogotá, la ciudad donde mayor cantidad de viajes inician.

Desde la perspectiva de los costos, el modelo de programación de vehículos se alinea de acuerdo con los datos suministrados por la compañía donde se pueden evidenciar los costos operacionales de los vehículos propios y el valor pagado por la contratación de terceros cuando no se tiene la disponibilidad de los vehículos propios.

5. Antecedentes y revisión de literatura

Teniendo en cuenta las necesidades del sector transportador, debemos centrarnos en propuestas para la reducción de costos y tiempos. En la literatura consultada se encontraron modelos VRP (vehicle routing problem), de los cuales se han recopilado algunos conceptos como los analizados por Braekers, Ramaekers, & Van Nieuwenhuyse (2016) quienes establecen que existe literatura sobre VRP con enfoques específicos como lo son capacidad, ventana de tiempo, periodos, dinámica, recogida y entrega de pedidos, ruteo de vehículos con múltiples depósitos, ruteo de vehículos con entregas divididas, ruteo de vehículos verde, aspectos de sincronización en ruteo de vehículos. Dantzig & Ramser (1959) introdujeron el problema de despacho de vehículos, modelaron como una flota homogénea de camiones podía cumplir la demanda de petróleo de un número de estaciones de gasolina desde un eje central con un mínimo de recorrido. Clarke & Wright (1964) generalizaron el problema con una optimización linear, cómo atender a un grupo de

clientes dispersos geográficamente alrededor de un depósito central, usando una flota de camiones con diferentes capacidades, a esto se le conoció como VRP. Park & Song (1997) introdujeron los tiempos de recorrido entre dos ubicaciones, dependiendo las áreas por donde el vehículo tiene que pasar y el tráfico en el momento del día. Una vez se empezó a implementar más características a este tipo de modelos Lenstra & Rinnooy Kan (1981) plantearon que los algoritmos exactos solo son eficientes en problemas con instancias pequeñas, las heurísticas y metaheurísticas debían ser implementadas en este tipo de transportes, debido a que las empresas cuentan con cientos de clientes al igual que un gran número de vehículos y variables.

Existen diferentes adaptaciones del VRP, el VRP clásico designa rutas para envíos óptimos, donde cada vehículo solo recorre una ruta, cada vehículo tiene las mismas características y solo tienen un depósito central. El objetivo del VRP es encontrar un conjunto de bajos costos en las rutas de los vehículos, que cada vehículo inicie y termine su ruta en el depósito y que la capacidad de estos no sea excedida. Este problema clásico se ha ido extendiendo con el tiempo, aumentando características de la vida real, tales como variación en la capacidad de los vehículos (una flota heterogénea HFVRP). De igual manera, se adicionaron las ventanas de tiempo (VRPTW), asumiendo que los envíos para los clientes deben ser entregados en un determinado tiempo, variando entre los diferentes clientes. El VRP con recogida y entrega (VRPPD) es donde los bienes deben ser recogidos de una ubicación conocida, y entregados en su destino utilizando un mismo vehículo, por lo que tanto el punto de recogida como el de entrega deben ser incluidos en la ruta del vehículo. El VRP con recorrido de vuelta (VRPB) donde el vehículo realiza entregas al mismo tiempo que recogidas en una misma ruta, algunos clientes requieren él envió y otros la recogida. El VRP multi depósito (MDVRP) donde se cuenta con múltiples depósitos dispersos entre los clientes. El VRP periódico (PVRP) es usado cuando la planeación es realizada sobre un periodo conocido y los envíos al cliente pueden ser realizados en días diferentes, en este problema los clientes pueden ser visitados más de una vez. Programación de producción y problema de ruteo de vehículos (PS-VRP) integra los siguientes pasos, la asignación de la orden del cliente, el tiempo de inicio y el tiempo de producción por cada orden del cliente, la asignación de todas las órdenes de los clientes para ser enviada en vehículos, las rutas de los envíos, el tiempo de envió por cada orden de los clientes (Braekers et al., 2016).

El transporte no solo depende de la programación de rutas para poder realizar las entregas, hay otros factores que influyen directamente en este tipo de problemas Bellman (1956) propone un ejemplo con un grupo de n ciudades, unidas por carreteras, con un tiempo estimado de recorrido entre cada ciudad, donde se desea determinar el camino desde una ciudad a otra minimizando el tiempo de viaje, basado en que el tiempo no tiene que ser directamente proporcional a la distancia, el tiempo de recorrido también depende de la calidad de los caminos y del tráfico que se encuentre en los mismos. El propósito de este autor es mostrar una ecuación funcional con programación dinámica para buscar el camino con menor tiempo.

También existen los problemas de tipo VSP, este tipo de problemas son ampliamente trabajados en las empresas de alquiler de vehículos, Ernst (2007) describe una empresa de alquiler de vehículos ubicada en Australia y Nueva Zelanda utiliza un programa llamado VASS o d-VASS el cual ayuda a la programación de los vehículos de alquiler en tiempo real, mientras el cliente está en línea solicitando el vehículo, el programa genera la mejor opción para el alquiler, minimizando costos operativos para la empresa. El uso de este programa presenta una reducción en los costos de sustitución del 30%, el 2% en reubicación y el 20% el número de reservas sin asignar. Adicionalmente reduce el tiempo considerablemente de la programación manual que realizaban anteriormente. Complementando esta investigación Ernst, Horn, Kilby & Krishnamoorthy (2010) trabajan sobre la empresa de alquiler de vehículos THL, y comparan su sistema VASS con un algoritmo de flujo de red para resolver el problema aplicando otras características. Como resultado se observa que se pueden tener mayores resultados en la rentabilidad de la empresa, adicionalmente sugiere un estudio más completo tomando datos como competidores, cancelaciones, otras técnicas de predicción y más.

El problema "Roadef'99" fue un problema de alquiler de vehículos planteado por Hertz, Schindl, & Zufferey (2009) donde se debía administrar una flota de carros de renta para satisfacer las necesidades de los clientes, cuando la empresa no puede suministrar un vehículo tiene tres opciones, la primera es ofrecer un vehículo de mejorar características, la segunda es subcontratar el vehículo o comprar un nuevo vehículo, estas situaciones acarrean diferentes costos para la empresa.

Kulkarni, Patil, Krishnamoorthy, Ernst, & Ranade (2018) plantean el problema de programación en vehículos de recreación (RVSP), vehículos de recreación o vehículos rentados, una empresa de renta de vehículos que opera desde diferentes locaciones, en cualquier punto en el tiempo un cliente puede hacer una reserva de un vehículo en cualquiera de los depósitos donde la compañía opera. La reserva se realiza de acuerdo con las necesidades del cliente, como la especificación de donde va a ser recogido el vehículo, donde va a ser entregado (puede ser el mismo depósito o uno diferente), la hora de recogida, el tipo de vehículo que requiere, la fecha y hora de entrega. El cliente también puede seleccionar otro tipo de vehículo en caso de que el que especifico no se encuentre disponible. En algunos casos el cliente solicita un único vehículo especifico, el cual se agenda como una reserva especial. En caso de que no se tengan vehículos disponibles en el lugar que el cliente necesita se debe relocalizar un vehículo desde otro punto o asignar otro tipo de vehículo si es posible (este costo de reubicación es una función de acuerdo con la duración que llevo realizarla).

Las empresas de alquiler de vehículos no son el único sector al que se le puede adaptar un modelo VSP, Guedes, Borenstein, Sâmara Visentini, de Araújo, Olinto César Bassi, & Kummer Neto (2019) tratan el problema de la programación de buses de servicio público en Brasil, el objetivo de este artículo es suministrar a los operadores ajustar su flota heterogénea basada en la perdida de pasajeros que presentan. Para este caso plantean un modelo de programación teniendo en cuenta el tiempo de partida en cada estación y la capacidad de los vehículos, el cual genera el mejor uso de los recursos de la flota, adicionalmente este modelo puede ser usado

para la toma de decisiones cuando deseen renovar la flota de transporte de este tipo de servicio.

Otro claro ejemplo de la adaptación de estos modelos es el que tratan Faiz, Vogiatzis, & Noor-E-Alam (2019) donde plantean un modelo de ruteo de vehículos con ventanas de tiempo, la solución planteada tiene presente la ubicación de la demanda, el objetivo del tiempo de entrega y la duración de cada tarea, la cual tiene en cuenta la suma del tiempo del cargue, de descargue y de recorrido entre puntos, características importantes para realizar una programación real.

Los casos de VSP también pueden ser resueltos con otro tipo de métodos matemáticos como por ejemplo los multiplicadores de Lagrange, en un problema de programación de vehículos con dos puntos de inicio, dos tipos de vehículos, un horizonte de tiempo dividido en periodos, un periodo de tiempo para reubicar el vehículo entre los dos nodos, todos los vehículos están disponibles en el inicio del horizonte de tiempo en la misma localización, dio como resultado una buena programación con este método pero con pocos procesos, para problemas más grandes es necesario el uso de programación (Ernst, Andreas T., Gavriliouk, & Marquez, 2011).

Una variación del VSP es el problema de programación de vehículos en múltiples depósitos (MDVSP) este problema es planteado por Kulkarni, Krishnamoorthy, Ranade, Ernst, & Patil (2018) donde considera una flota homogénea, con vehículos que se encuentran estacionados en diferentes puntos iniciales o depósitos, la asignación de los viajes a estos vehículos es mediante una programación establecida y el objetivo es minimizar los costos de los vehículos teniendo en cuenta la espera y los trayectos que el vehículo debe realizar vacío. Plantea la solución mediante arcos, los cuales tienen la información del costo y tiempo entre los puntos que se puede desplazar un vehículo. Este modelo cuenta con diversas características como lo son los diferentes puntos de donde puede iniciar los vehículos y el objetivo de minimizar costos por los recorridos que los vehículos realicen vacíos.

Las nuevas políticas que se han generado para combatir el cambio climático han llevado a incluir en las investigaciones la reducción del CO2 que emiten los vehículos, algunos de los factores que afectan directamente el consumo de combustible de los vehículos y por ende el aumento de las emisiones de CO2 son la presencia de alto tráfico, la velocidad del vehículo, el peso del vehículo.

Alinaghian & Naderipour (2016) plantea un modelo NP-hard donde busca reducir el consumo de combustible y solucionar el problema de ruteo, obteniendo hasta un 21% de reducción de consumo de combustible en el caso de estudio planteado. El transporte de carga contribuye aproximadamente al 10% de emisiones de carbono en Colombia, el transporte por carretera es el responsable del 88% de las emisiones, mientras que el 6% proviene de transporte acuático, el 5% transporte aéreo y el 0.5% del ferroviario (IDEAM, PNUD, MADS, DNP, CANCILLERÍA, 2015). Otros autores plantearon un problema de rutas de vehículos, donde el vehículo parte de un nodo inicial, debe pasar por uno o más clientes y terminar en un nodo final, para este problema se planteó un modelo matemático para cumplir con esta ruta teniendo en cuenta las emisiones de CO2 de los vehículos calculadas por el consumo de combustible de estos (Androutsopoulos & Zografos, 2017).

Uno de los modelos más completos fue descrito por Ghannadpour & Zarrabi (2019) con un problema multiobjetivo de programación de rutas y reducción de emisiones de CO2 con una flota heterogénea. Esta flota se forma cuando las capacidades de los vehículos de la empresa no cumplen con las necesidades del cliente y se debe recurrir al alquiler de otros vehículos. Los carros rentados no deben volver al depósito luego de terminar el recorrido así que se puede eliminar el recorrido de vuelta al depósito para este tipo de casos. Adicionalmente, se tiene en cuenta el consumo de combustible mediante un análisis del peso de la carga que lleva el vehículo y el coeficiente de fricción que este genera durante su desplazamiento, este tipo de problemas se manejaron bajo algoritmos genéticos, MOG, fronteras de Pareto.

Entre los últimos estudios realizados encontramos la propuesta de Wang & Sheu (2019) donde al problema de ruteo de vehículos le agrega una extensión mediante el uso de drones, donde estos son usados para complementar el trayecto que los vehículos no puedan completar.

Como se evidencia anteriormente, las empresas de transporte pueden ser objeto de diferentes tipos de análisis en busca de una gran variedad de objetivos, pero ningún autor ha realizado un caso aplicado a una empresa de transporte en Colombia, teniendo en cuenta tiempos y costos reales, en busca de un modelo de programación de vehículos que ayude a la disminución de recorridos vacíos contribuyendo al medio ambiente y genere una reducción de los costos de transporte.

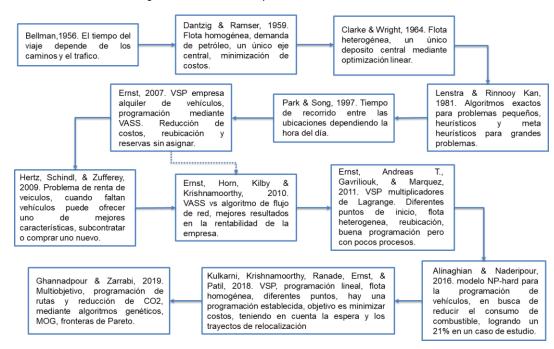


Diagrama 1. Antecedentes y revisión de literatura

Fuente: elaboración propia

6. Propuesta

La propuesta del modelo para la programación de vehículos en una empresa de transporte terrestre de carga en Colombia corresponde a la realización de un modelo matemático de programación lineal que incluye las características reales de la empresa.

El modelo faculta a la empresa para programar de manera conveniente el tipo de vehículo que generará menores costos, teniendo en cuenta los requerimientos de los clientes y la disponibilidad de los vehículos.

El modelo contempla los datos actuales de la empresa, pero puede modificarse para analizar diferentes escenarios con un mayor o menor número de vehículos propios, para así poder brindar una recomendación frente a la adquisición o venta futura de estos.

Las restricciones propias del modelo incluyen los requerimientos del cliente frente al tipo de vehículo que se va a utilizar, la disponibilidad de vehículos, el tiempo de recorrido de cada trayecto, el cumplimiento del total de los viajes, el uso de un solo vehículo por cada viaje, la no disponibilidad del vehículo hasta que termine el viaje, los vehículos de propiedad de la empresa inician en tiempo t_0 desde Bogotá, si hay un viaje que inicie desde otra ciudad y se deba utilizar un vehículo propio que se encuentre en Bogotá, debe duplicarse el costo del viaje para así tener en cuenta el costo del recorrido vacío. De igual manera, si los vehículos propios terminan su recorrido en una ciudad diferente a Bogotá y no hay ningún viaje programado en el siguiente periodo de tiempo en dicha ciudad deben ser reubicados, el costo de reubicación es el costo del recorrido que acaba de finalizar por dos, los vehículos alquilados pueden iniciar y finalizar en cualquier lugar, no hay costos adicionales al costo pagado, sin importar donde inicie o terminen su recorrido.

6.1. Caracterización del caso de estudio.

Se tomó la información suministrada por la empresa, y se basó el análisis en el año 2018, donde se realizaron 441 viajes. Se identificó que, del total de viajes realizados en el 2018, el 52% tuvieron como ciudad de origen Bogotá, mientras que el principal destino fue la ciudad de Rionegro con el 39%, tal como se ve en la ilustración 1 y en la ilustración 2. La empresa cuenta con 1 vehículo sencillo y 2 vehículos turbo. Adicionalmente se cuenta con una gran cantidad de vehículos alquilados, los cuales son utilizados aleatoriamente sin generar ningún tipo de fidelidad. Los vehículos propios son asignados para viajar cualquier día del mes, pero como política de la empresa se intentan mantener en Bogotá y solo ser asignados a viajes con requerimientos especiales.

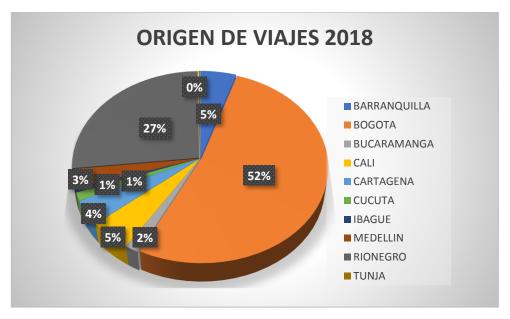


Ilustración 1. Origen de viajes 2018

Fuente: elaboración propia a partir de información concedida por la empresa.

Ilustración 2. Destino de viajes 2018.

Fuente: elaboración propia a partir de información concedida por la empresa.

Para efectos del estudio se seleccionaron las 23 rutas realizadas en el año 2018, cada una de estas tiene un tiempo estándar establecido por la cantidad de kilómetros del recorrido, en la tabla 5 se encuentran la distancia entre ciudades y en la tabla 6 los tiempos por recorrido, estos tiempos son estándar y tienen una holgura suficiente para terminar los recorrido, sin embargo dependiendo de la hora de cargue o de descargue estos tiempos pueden variar, para efectos del modelo propuesto se manejan de manera estándar.

Tabla 5. Distancia en kilómetros entre ciudades.

DISTANCIAS	Barranquilla	Bogotá	Bucaramanga	Cajica	Cali	Cartagena	Cucuta	Ibague	Medellin	Rionegro	Santa Marta	Tunja
Barranquilla	0	1004	0	0	0	0	0	1000	708	0	0	0
Bogotá	1003	0	398	0	462	1062	0	0	419	380	0	0
Bucaramanga	0	397	0	0	0	0	0	0	0	0	0	0
Cajica	0	0	0	0	0	0	0	0	0	0	0	0
Cali	1254	463	763	0	0	0	0	0	0	457	0	0
Cartagena	0	1070	0	0	0	0	0	0	0	0	236	0
Cucuta	0	555	0	0	0	0	0	0	0	0	0	0
Ibague	0	202	0	0	0	0	0	0	0	0	0	0
Medellin	0	419	0	0	0	0	0	0	0	0	0	0
Rionegro	0	376	0	0	469	650	0	0	0	0	0	0
Santa Marta	0	0	0	0	0	0	0	0	0	0	0	0
Tunja	0	0	0	119	0	0	0	0	0	0	0	0

Fuente: elaboración propia a partir de información concedida por la empresa.

Tabla 6. Tiempo en días del recorrido entre ciudades.

TIEMPO	Barranquilla	Bogotá	Bucaramanga	Cajica	Cali	Cartagena	Cucuta	Ibague	Medellin	Rionegro	Santa Marta	Tunja
Barranquilla	0	2	0	0	0	0	0	3	2	0	0	0
Bogotá	2	0	1	0	1	3	0	0	1	1	0	0
Bucaramanga	0	1	0	0	0	0	0	0	0	0	0	0
Cajica	0	0	0	0	0	0	0	0	0	0	0	0
Cali	2	1	2	0	0	0	0	0	0	1	0	0
Cartagena	0	3	0	0	0	0	0	0	0	0	1	0
Cucuta	0	2	0	0	0	0	0	0	0	0	0	0
Ibague	0	1	0	0	0	0	0	0	0	0	0	0
Medellin	0	1	0	0	0	0	0	0	0	0	0	0
Rionegro	0	1	0	0	1	2	0	0	0	0	0	0
Santa Marta	0	0	0	0	0	0	0	0	0	0	0	0
Tunja	0	0	0	1	0	0	0	0	0	0	0	0

Fuente: elaboración propia a partir de información concedida por la empresa.

Los costos de cada viaje varían dependiendo el tipo de vehículo en el que se realice el viaje y si el vehículo es propio o alquilado, estos costos se relacionan en el anexo A. Donde se especifica el costo de realizar cada una de las rutas hechas en el año 2018 dependiendo el vehículo utilizado. Entre los costos de cada recorrido están incluidos los costos de los peajes, el combustible consumido, los costos de alojamiento y alimentación del conductor durante el tiempo de recorrido, los parqueaderos del vehículo, un promedio de imprevistos como pinchadas, engrase, lavadas, un porcentaje del costo del mantenimiento preventivo y correctivo del vehículo, como lo es el cambio de aceite, alineación, cambio de llantas entre otros, y por último un porcentaje del costo de recorrido que debería asumir si tiene que retornar vacío a Bogotá, este porcentaje es bajo ya que los vehículos pueden cargar para otras compañías antes de volver vacíos.

Para facilitar la comparación de los resultados más adelante, se va a designar la descripción actual de la empresa como el escenario 0. En los anexos B, C, D, se muestran las tablas de los viajes programados en el 2018, el origen, destino y el tipo de vehículo que se utilizó para realizar el recorrido. Tomando los viajes realizados en 2018, se puede determinar que la empresa utilizo los vehículos de su propiedad en un 41% del total de los viajes, 19% para los tipos turbo y del 22% para el tipo sencillo del total de los viajes, como lo muestra la ilustración 3. Esto demuestra que la empresa

prefiere contratar vehículos alquilados (59%) a pesar de que estos tienen un mayor costo por recorrido.

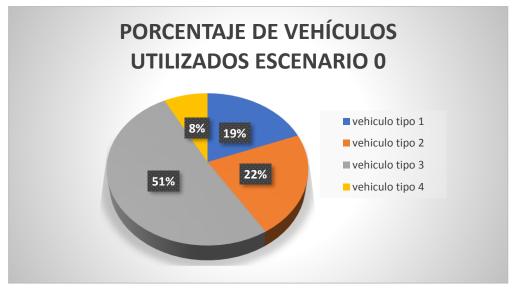


Ilustración 3. Vehículos utilizados escenario 0

Fuente: elaboración propia a partir de información concedida por la empresa.

También, se obtuvo el costo de transporte pagado por la empresa en el 2018, esta información se muestra en la ilustración 4, donde se puede observar que los tres meses con mayores costos fueron agosto, mayo y diciembre, mientras que los menores costos fueron febrero, julio y junio.

Ilustración 4. Costo mensual escenario 0.

Fuente: elaboración propia a partir de información concedida por la empresa.

Adicionalmente, se obtuvo la cantidad de vehículos propios que cumplen con los viajes originados en Bogotá, esto con el fin de mostrar cuál es el porcentaje de uso de estos vehículos en los trayectos que menor costo tienen, debido a que no generan costo de reubicación como se ha descrito anteriormente. En la ilustración 5 se muestra el porcentaje de viajes realizados por vehículos propios y alquilados cuando la ciudad de origen es Bogotá, y en la ilustración 6 se muestra el porcentaje de los viajes realizados con vehículos propios que tuvieron como origen Bogotá y el porcentaje desde las demás ciudades.

Ilustración 5. Vehículos utilizados con origen Bogotá escenario 0.

Fuente: elaboración propia a partir de información concedida por la empresa.

ORIGEN VIAJES REALIZADOS POR VEHÍCULOS PROPIOS ESCENARIO 0

BOGOTA

OTRAS
CIUDADES

Ilustración 6. Origen viajes realizados por vehículos propios escenario 0.

Fuente: elaboración propia a partir de información concedida por la empresa.

Por último, el total de viajes realizados entre los viernes y domingos fue de 151 viajes, de los cuales el 43% fueron realizados con vehículos propios, como muestra la ilustración 7. Este dato es de importancia ya que en el escenario 2 se plantea limitar el uso de los vehículos propios para los fines de semana, a menos que se tenga la obligación de su uso, de esta manera analizar si puede generar una mejor rentabilidad para la empresa.

Ilustración 7. Vehículos utilizados en fin de semana escenario 0.

Fuente: elaboración propia a partir de información concedida por la empresa.

6.2. Modelo Matemático

Índices:

 $i = tipo \ de \ vehiculo \ 1,2,3,4$ $1: Turbo \ propio$ $2: Sencillo \ propio$ $3: Turbo \ alquilado$ $4: Sencillo \ alquilado$ $j = Ruta \ 1,2,, n$ $k = Dia \ del \ mes \ 1,2,, 33$

Parámetros:

 $TR_j =$ "Tiempo de recorrido en la ruta j" $CV_i =$ "Cantidad de vehiculos tipo i disponibles para programar" $TI_j =$ "Tiempo de inicio de la ruta j"

 CT_{ij} = "Matriz con el costo de transporte por tipo de vehiculo i en la ruta j" U_{ij} = "Matriz que específica que un vehiculo tipo i se puede utilizar en la ruta j?" R_{ij} = "Matriz que específica si la ruta j se programa en este horizonte de tiempo"

Variables:

$$X_{ijk} = \begin{cases} 1 \text{ si el veh\'(culo tipo i es asignado a la ruta j en el dia } k \\ 0 \text{ de lo contrario} \end{cases}$$

 $Z_{ij}=$ "Variable que conserva o dobla el costo de transporte de la asignación $de\ vehiculo\ tipo\ i\ a\ la\ ruta\ j\ de\ acuerdo\ a\ las\ restricciones"$

Esta variable es un entero.

COSTO = "Costo total de la programacion"

Esta variable es un entero.

Función Objetivo:

$$Min\ COSTO = \sum_{ijk} CT_{ij} * X_{ijk} \qquad (FO)$$

Sujeto a:

$$100 * R_j \ge \sum_{ik} X_{ijk} \qquad \forall j \tag{1}$$

$$X_{ijk} \le U_{ij} \quad \forall ijk$$
 (2)

$$\sum_{i} X_{ijk} * U_{ij} = R_j \qquad \forall jk : TI_j \le k \le TI_j + TR_j \tag{3}$$

$$\sum_{j} X_{ijk} \le CV_i \quad \forall ik \tag{4}$$

$$\sum_{i} X_{ijk} \le 1 \quad \forall j \tag{5}$$

$$Z_{ij} = 2 * X_{ijk} \quad \forall ij: i \le 2 ; BOG(j) = 0$$
 (6)

$$Z_{ij} = X_{ijk} \quad \forall ij: i \le 2 ; BOG(j) = 1$$
 (7)

$$Z_{ij} = X_{ijk} \quad \forall ij: i > 2 \tag{8}$$

Como se mencionó anteriormente, el modelo se alinea de acuerdo a los datos suministrados por la empresa y sus necesidades en el momento de realizar la programación, los parámetros de entrada, son los datos proporcionados en el histórico de viajes descrito anteriormente, el parámetro TR_j está descrito anteriormente en la matriz de tiempo de recorrido por cada ruta, CV_i son los vehículos disponibles para ser programados en cada horizonte de tiempo, donde se asignan los 3 vehículos propios y la menor cantidad de vehículos alquilados con los que se puede realizar la programación, TI_j es el tiempo de inicio de cada ruta, obtenido del histórico de viajes suministrado, CT_{ij} es el costo de transporte por cada tipo de vehículo en las rutas a programar, este costo esta descrito anteriormente, U_{ij} son la posibilidad de vehículos que se pueden utilizar en cada viaje, esta información hace parte del histórico de datos y se asigna dependiendo los requerimientos de cada cliente y por último el parámetro R_j , el cual confirma si todas las rutas ingresadas van a ser ejecutadas o hay alguna

cancelación. Por otra parte las restricciones representan las necesidades y realidades de la empresa en el momento de programar los vehículos, la restricción (1), asegura que no se asignen vehículos a rutas que no estén programadas en el periodo de tiempo, esto para asegurarse que los costos obtenidos son únicamente de los vehículos utilizados para realizar algún viaje, la (2), genera que la asignación de un vehículo a un viaje sea realizada únicamente si dicho vehículo cumple con los requerimientos del cliente, la (3) garantiza que una vez asignado un vehículo, este no va a estar disponible hasta que no termine el servicio, (4) en cada periodo de tiempo no se pueden programar una mayor cantidad de vehículos de los que se tienen disponibles, (5) cada recorrido puede ser realizado como máximo por un vehículo, (6) los vehículos propios que son asignados a rutas que inician desde una ciudad distinta a Bogotá se les debe duplicar el costo para representar los costos de reubicación, (7) los vehículos propios que son asignados a un viaje que inicie en Bogotá mantendrán su costo original, y por último la restricción (8) que mantiene el costo original para los vehículos alquilados sin importar donde inicien su viaje.

6.3. Escenarios

Para la evaluación de la propuesta se tomaron los 12 meses del año 2018, y se plantearon dos (2) escenarios diferentes adicionales en cada mes con base en el modelo anterior; esto con el fin de analizar y evaluar el impacto que tiene el modelo sobre la programación de vehículos conforme a las necesidades con las que cuenta la empresa. Los resultados se presentarán de manera gráfica, donde se identifica en la parte inferior horizontal el día del mes y en el costado izquierdo de manera vertical el tipo de vehículo que se utilizó para el servicio se debe recordar que los vehículos tipo 1 son vehículos turbo propios, tipo 2 vehículos sencillos propios, tipo 3 vehículos turbo alquilado y tipo 4 vehículos sencillos alquilados. Cada mes cuenta con tres ilustraciones , la primera ilustración corresponde al escenario 0 que es la programación histórica suministrada por la empresa (descripción actual de la

empresa), la segunda ilustración representa el escenario 1, el cual es el resultado del modelo propuesto y programado en GAMS, y la tercera ilustración corresponde al resultado del mismo modelo programado en GAMS pero modificando en las restricciones iniciales el uso de los vehículos propios en los fines de semana, esto siempre y cuando se cuente con la posibilidad de programar vehículos alquilados según los requerimientos iniciales.

6.3.1. Escenario 1

Este escenario contempla el modelo propuesto, considerando las condiciones actuales de la empresa, cuenta con los mismos datos que el escenario 0, manteniendo los mismos datos de entrada, la misma cantidad de vehículos propios, se mantiene la asignación de vehículos dependiendo los requerimientos del cliente, pero el modelo da la posibilidad de utilizar todos los vehículos disponibles en cada periodo de tiempo, pero a diferencia del escenario 0 en este escenario los vehículos propios no van a presentar la política de ser mantenidos en Bogotá y serán asignados cada vez que su costo sea menor y cumplan con las restricciones del modelo.

6.3.2. Escenario 2

Este escenario nuevamente contempla el modelo propuesto, considerando las condiciones actuales de la empresa, cuenta con los mismos datos que el escenario 0 y 1, a excepción de una modificación en la matriz de posibles vehículos para ser programados en un viaje, esta matriz se encuentra identificada como U_{ij} en los parámetros del modelo, en este escenario dicha matriz es modificada, quitando de los viajes a programar que inician en un fin de semana los vehículos propios, siempre y cuando sea posible. La tabla que relaciona los viajes con los vehículos que pueden usarse según los requerimientos del cliente se encuentra en los anexos E, F, G. Un ejemplo de esta modificación se puede ver en la tabla 7, donde en el mes de enero, los viajes j11, j12 y j13 inician en un día correspondiente al fin de semana, en el

escenario 1 los viaje j11 y j13 pueden ser realizados con los vehículos de tipo 2 y 4, pero en el escenario 0 esos mismos viajes solo podrán ser realizados por vehículos de tipo 4 ya que estos pertenecen a los vehículos alquilados, por otra parte el viaje j12 en el escenario 1 y en el escenario 2 cuentan con los mismos datos de entrada, ya que este viaje solo puede ser realizado con vehículos propios y no hay manera de que sean realizados con un vehículo alquilado.

Tabla 7. Comparación escenario 1 vs escenario 2

		ESCENARIO 1			ESCENARIO 2	
TIPO DE	12/01/2018	12/01/2018	13/01/2018	12/01/2018	12/01/2018	13/01/2018
VEHICULO	j11	j12	j13	j11	j12	j13
i1		1			1	
i2	1	1	1		1	
i3						
i4	1		1	1		1

Fuente: elaboración propia a partir de información concedida por la empresa

7. Resultados

Los modelos descritos en los escenarios 1 y 2 fueron modelados en GAMS y ejecutados en la página web www.neoserver.com. Se realizó la simulación en los 12 meses del año para analizar la programación propuesta con el modelo y poder comparar que factores la empresa no está teniendo en cuenta, causando un costo más alto de lo que podría ser.

Es importante resaltar que el modelo fue elaborado con base en las características de la empresa, pero que puede ser adaptado a otras empresas que manejen el mismo tipo de servicios con algún tipo de variación en sus características.

Los parámetros de ingreso fueron suministrados por la empresa, los tiempos de recorrido son datos del tiempo máximo que puede tardar un vehículo en completar su recorrido en un contexto cotidiano, para el escenario 0 los tiempos de duración son los reales y en algunos casos presentaron algunas variaciones en sus medidas, el

modelo propuesto no se basó en estos tiempos ya que son aleatorios y no siempre pueden presentarse, por este motivo se tomaron los datos del tiempo máximo y así se genera la programación.

Las tablas de los resultados, con los dos escenarios mensuales arrojadas por GAMS se encuentran entre los anexos H y S, En estas tablas se identifica el J (número) del viaje, el vehículo utilizado para éste y el costo total del mes para cada escenario propuesto.

Como se había descrito anteriormente, los resultados de la programación serán mostrados de manera gráfica, para poder comparar los escenarios propuestos con el actual, posteriormente se realizará el análisis de los resultados para comparar cuales fueron las variaciones y los costos de todos los escenarios de manera anual. A continuación, se mostrarán las ilustraciones de los 12 meses del año 2018 cada una con sus 3 escenarios. Se toman como ejemplo la ilustración 8, donde muestra la programación de mes de enero en los 3 escenarios, el recuadro de cada escenario está enmarcado al costado izquierdo por el tipo de vehículo, v1 y v1.1 son los vehículos turbo propios, v2 es el vehículo sencillo propio, v3, v3.n, son los vehículos turbo alquilados y v4, v4.n son los vehículos sencillos alquilados, y en la parte inferior se encuentran los días del mes correspondiente, los días que están en color rojo son los días del fin de semana donde inicio algún servicio. La ilustración de color verde es el escenario 0, en el mes de enero se puede observar que en este escenario se utilizaron los 3 vehículos propios, 6 vehículos turbo alquilados y 4 vehículos sencillos alquilados para realizar todos los viajes. Los vehículos propios realizaron 14 viajes y 16 viajes fueron realizados por vehículos alquilados. En color amarillo se encuentra el escenario 1, donde se puede ver que se utilizaron los 3 vehículos propios, pero únicamente 4 vehículos alquilados, de igual manera se cumplió con la misma cantidad de viajes del escenario anterior, los vehículos propios realizaron 12 viajes, mientras que los alquilados 18. Por último, la ilustración de color azul muestra el escenario 2, donde se utilizaron la misma cantidad de vehículos que en el escenario anterior, y en esta oportunidad los vehículos propios realizaron 11 viajes mientras que los alquilados 19. De esta manera, se puede observar y analizar las variaciones en la programación de los 3 escenarios en cada uno de los meses, las convenciones son iguales y el número de vehículos propios se mantiene en todos los escenarios y meses, mientras que el número de vehículos alquilados se adapta a la menor cantidad posible para los escenarios 1 y 2, en el escenario 0 se muestra la cantidad real utilizada de estos vehículos. De igual forma, las ilustraciones 9 – 19 describen la programación encontrada para los meses de febrero a diciembre.

Ilustración 8. Programación mes de enero escenario 0, 1,2.

	_		_			-		-		_				ES	CEN	IARI	00		-			•	-			-	_			
V1				J6	J7				J1	LO		J	12										J2	21		J2	23			
V1.1														J1	L4	J16														
V2				J3						J9					J	15	J1	18										J2	26	J30
V3			J	1																										
V3.1				J2																										
V3.2				J4			J8																						J	28
V3.3				J5																										
V3.4																J1	.7											J2	25	J29
V3.5																											J2	24		
V4											J1	1	J13									J2	20					J2	27	
V4.1																			J19											
V4.2																											J22			
ENE	1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
														ES	CEN	IARI	01													
V1			J	1					J1	LO				J1	L4								J2	21					J	28
V1.1				J6													J1	L8								J2	23		J	29
V2				J4							J1	1																J2	26	
V3				J2			J8					J	12			J1	7											J24		
V3.1				J5											J	16			J19)								J2	25	
V4				J2						J9					J	15						J2	20				J22		J	30
V4.1					J7							J	13															J2	27	
ENE	1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
						_								ES	CEN	IARI	02													
V1			J	1					J1	LO				J1	L4		J1	L8					J2	21				J2	27	
V1.1				J6								J	12																J	28
V2				J5			Ц	Ц																				J2		
V3				J2			J8								J	16			J19)						J2	23	J2	25	
V3.1				J4				Ц								J1	.7											J24	_	
V4				J3						J9		J	13		J	15						J2	20				J22		_	29
V4.1					J7			Ц			J1	1																		30
ENE	1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Ilustración 9. Programación mes de febrero escenario 0, 1,2.

			_			-		_	_					ESC	ENA	۱RIC	0 0											
V1	J	1						J	9	J1	L1							J1	L7				J2	2				
V1.1																												
V2		J	3			J	5		J	10			J1	12		J1	15	J1	L6		J18	3					J23	
V3	J	2																										
V3.1						J	4																					
V3.2						J	6																					
V3.3						J	8																					
V3.4														J1	L3													
V3.5																				J1	L9							
V3.6																					J:	20	J21					
V4						J	7																					
V4.1															J14													
FEB	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
														ESC	ENA	ARIC) 1											
V1	J	1				J	5			J1	l1					J1	L 5			J1	L9	J21	J2	2				
V1.1	J	2						j	9									J1	Ĺ7		J.	20						
V2		J	3						J	10					J14						J18					J2	23	
V3						J	4							J1	L3			J1	L6									
V3.1						J	6																					
V4						J	7						J1	<u>12</u>														
V4.1						J	8																					
FEB	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
														ESC	ENA	۱RIC	2 (
V1	J	1				J	5													J1	<u>1</u> 9	J21						
V1.1	J	2						J.	9												J	20						
V2															J14						J18					J2	23	
V3		J	3			J	4			J1	11			J1	J14 J13			J1	L6				J2	2				
V3.1						J	6									J1	L 5	J1	L7									
V4						J	7		J	10			J1	L2														
V4.1						J	8																					
FEB	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

Ilustración 10. Programación mes de marzo escenario 0, 1,2.

		_	•	_	_					•	•	-	-	E	SCE	NA	RIO	0	-	•	•	-	-			-				•	٦
V1						J4	ļ			J6				J:	11				J1	. 2	J14	J1	18		J2	24				J3	0
V1.1						П																			J2	23					
V2	J	1	J3			J5	,					J	8										J2	22		J2	27			J3	1
V3															J10																
V3.1																				J	15										
V3.2																														J3	2
V3.3																					J1	.6									
V3.4											J	7																			
V3.5																					J13			J21						J2	9
V3.6																						J1	19		J2	25					
V3.7																					J1	.7					J26				
V3.8		J	2																												
V4													J	9																	
V4.1																								J20							
V4.2																												J28			
MAR	1	2	თ	4	5	6	7	8	9 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	1
														Е	SCE	NΑ	RIO	1													
V1										J6				J:	11					J	14	J:	19		J2	23				13	0
V1.1												J	8							J	15	J1	18		J2	24				J3	2
V2	J	1				J5	,														J1	.6	J2	22	J2	25		J28		J3	1
V3		J	2			J4	ŀ				J	7			J10	1			J1	L 2	j1	7					j26			j2	9
V3.1		J	3																		J13			j21							
V4													J	9										J20		j2	27				
V4.1																															
MAR	1	2	3	4	5	6	7	8	9 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	1
														Е	SCE	NΑ	RIO	2													
V1												J	8							J	14	J1	18		J2	23					
V1.1														J:	11						J1	6			J2	24				J3	0
V2	J	1				J5	,														J1	.7			J2	25		J28			
V3		J	2												J10						J13			J21						J2	9
V3.1		J	3			J4	ŀ			J6	J	7								J	15	J1	19				J26			J3	2
V4													J	9					J1	2				J20		J2	27				
V4.1							1																J2	22						J3	1
		_		-			_	_	-		-		_															-			1

Ilustración 11. Programación mes de abril escenario 0, 1,2.

		•			_										ESC	EN/	ARIC	0									-				
V1				J	8		J1	1		J1	L 4	J16	J17																		
V1.1																															
V2			-	4		J1	LO				J15							J2	23						J2	29	J31	J3	4		
V3		J	1	J3																											
V3.1																														J3	5
V3.2			J	6																											
V3.3			J	5																											
V3.4												J1	8																		
V3.5													J1	9	J21			J2	22	J	25	J2	27								
V3.6																							J2	28							
V3.7															J20																
V3.8			J	7					J	13																					
V3.9			J	2		J	9																								
V4																									J3	30					
V4.1								J12	2																						
V4.2																											J3	3			
V4.3																			J2	24	J26						J3	2			
ABR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	1
															ESC	EN/	ARIC) 1													
V1		J	1	J	8		J1	1		J1	L 4			J	21			J2	23				J2	28						J3	5
V1.1			J	5		J9			J	13	J:	16							J2	24											
V2			J	7		J1	LO																		J2	29		J3	4		
V3			J	2								J1	8		J20					J25	<u> </u>					J:	31				Ш
V3.1			J	6									J1	9				J2	22			J27									
V4			J	3			J	112	2			J1	.7							J	26				J3	30	J3	2			Ш
V4.1			J	4							J15	,															J3	3			
ABR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	1
															ESC	EN/	ARIC	2 (
V1		J	1	J	8				J	13	J:	16						J2	23				J2	28						J3	5
V1.1			J	5						J1	L 4								J2	24											
V2			-	7		J9																			J2	29	J3	2			
V3			J	2			J1	1				J1	.7		J20			J2	22			J27				J	31				
V3.1			J	6									J1	9						J25	5										П
V4			J	3		J1	LO				J15	5								J.	26						J3	3			
V4.1			J	4				J12				J1	8	J	21										J3	_		J3	34		Ш
ABR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	1

Ilustración 12. Programación mes de mayo escenario 0, 1,2.

	_	_			—	_			_					ES	CEN	IARI	0 0	—		_	—		—				_	_	—		
V1			J4				J1	4 J	J15	J16							J2	29	Jä	30							JZ	l 1			
V1.1								T																						J	15
V2			J5	J6	J13											J22					J3	31								J42	
V3	J:	L						\perp																							
V3.1								\perp								J2	7								J4						
V3.2								4									<u> </u>								J3	37					
V3.3								4								J2															
V3.4								+								J2	8					Jä	35								
V3.5	_	_	J2	H				+																							
V3.6 V3.7		\dashv	J3			\dashv	_	+															J34								
V3.7		\dashv	-	11		\dashv		+								J2	6				J3	22	J34 J3		J39						
V3.8		\dashv	,		J7			+		J1	7					J23	.0				- 30		,		133						
V3.10								$^{+}$				19			J	21								J	38				J4	4	
V3.11		+						\dagger			J18										J32										
V3.12			\top					\dagger																					J4	3	П
V3.13			J	10				Ť																							
V4					J8			T																							
V4.1														J	20	J24															
V4.2				J9	J1	L2																									
MAY	1	2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
														ES	CEN	IARI	01														
V1			J5	J	13		J1	1	J1	L 6	J:	L9				J2	:6		Jä	30				J	39				J3	4	
V1.1					J7			4		J1					J	21	J2	29			J3						J	12			35
V2			J4		J12			1			J18	1				J22					J32									J42	
V3	J:	_		J6		\dashv		J1	L5							J23	_						J34	_	J4	Ю					
V3.1		_	J2			_		+								J2						Jä			38				J	4	
V3.2		_	J3	10				+								J2							J3	90	J3	7					
V3.3 V4			J	10	J8			+						ľ	20	JZ	.0								Ja	•/					
V4.1		\dashv		J9				+						34	_	24															
V4.1		\dashv		11		\dashv		+							,						J3	1									
	1	2	3 4		6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	_		24	25	26	27	28	29	30	31	32
			_	_			_	_				_	l		_	IARI				<u> </u>		_									
V1		1	J3				J14	1								J2					J3	33							J4	3	
V1.1		\dashv	J5						J1	6						J2	28										JZ	11	J4	4	П
V2		7	J4					T								J23					J32									J42	
V3	J	L		J6				J			J18				J	21	J2	29					J34		J4	0				J	1 5
V3.1			J2	J	13			J1	L5	J1	7					J22			Jä	30					J3	37					
V3.2			J	10				⊥			J:	L9				J2	25					Jä	35	J	39						
V3.3			J	11				\perp								J2	.7							J	38						
V4					J7			\downarrow						J	20				<u> </u>	_			J3	86							Щ
V4.1					J8			\downarrow							J	24							L								
V4.2		_		J9				+													J3	31									Н
V4.3		_			J12			\downarrow	4.0		4.0	4.0			4.5	4-	4.0	4.0		2.	22	-	2.		•		20	22	22	2.1	22
MAY	1	2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32

Ilustración 13. Programación mes de junio escenario 0, 1,2.

		_	_	_	-	-		_		•	•			E	SCE	NA	RIO ()	•												
V1	J	1	J3				JS)	J11																						
V1.1						J(6	J	14							J	23														
V2									J:	13					J1	18	J20				J2	26						J2	27	J28	П
V3																	J2	1													
V3.1					J5	;																									
V3.2	J	2																													
V3.3															J1	L9															
V3.4																				J24											
V3.5					J4	ŀ	J7						J1	L 7																	
V3.6																			J2	25											
V3.7							J1	0																							
V3.8																	J22													J2	9
V3.9							JE	3					J1	L 6																	
V4													J1	L 5																	
V4.1								J	12																						
JUN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	1
														Е	SCE	NΑ	RIO :	L													
V1		J	3			J	6	J	14				J1	. 6		J	23				J2	26						J2	27		
V1.1					J5		J8	3							J1	L8														J2	9
V2	J	1					JS	•																							
V3	J	2			J4	ŀ	J1	0					J1	L 7			J22			J24									J	28	
V3.1						J	7	J	11								J2	1													
V4								J	12				J1	.5		J	20		J2	25											
V4.1									J:	13					J1	L9															
JUN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	1
														E	SCE	NΑ	RIO 2	2													
V1					J5	;	JS	3					J1	L 6		J	23				J2	26									
V1.1						J	6	J	14						J1	L8												J2	27		
V2	J	1				J	7																								
V3	J	2			J4	ļ.	JS)					J1	. 7		J	22		J2	24											
V3.1		J	3				J1	0							J1	19			J2	25									J	28	
V3,2								J	11							J	20													J2	9
V3,3																J	21														
V4								J	12				J1	15																	
V4.1									J:	13																					
JUN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	1

Ilustración 14. Programación mes de julio escenario 0, 1,2.

	•				•											SCE	NA	RIO	0			•			_		-				•	•
V1							J	6					J	9	J11			J:	15			J1	L7			J2	23		J26	J2	28	J29
V1.1																																
V2					J	3	J4			J	8							J:	14	J16				J1	L 9		J	25				
V3				٦	1																											
V3.1																								J2	20	J2	24					
V3.2																										J2	21					
V3.3																															J	30
V3.4															J10				J	12												
V3.5									J	J7																						
V3.6						J2	2																									
V3.7						J	15																J1	18		J2	22					
V4																											J:	27				
V4.1																		_	13													
JUL	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
															E	SCE	NΑ	RIO	1													
V1					J	3			J	J7			J	9				J:	14			J1	L7	J1	L9			J26	<u> </u>		J	30
V1.1							J	6		J	8			J	11			J:	15				J1	L8		J2	22			J2	28	
V2																										J2	21					
V3				J	1	_	14								J10				_	12				J2	20	J2	24					
V3.1						J2													_	16								27			J	29
V4						J	15											J:	13							J2	23					
V4.1																												25				
JUL	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15					20	21	22	23	24	25	26	27	28	29	30	31	32
																SCE	NΑ	RIO	2			,										
V1					J	3			J	J7				J	11			J:	15				J1	18		J2	22			J2	28	
V1.1							J	6		J	8							J:	L4					J1	19			J26	;		J	30
V2																										J2	21					
V3				J	1	_	14						J	9																		
V3.1						J2	2								J10					12								27			J	29
V3,2						L														16		J1	L7	J2	20		24					
V4						J	15											J:	L3							J2	23					
V4.1					L	<u> </u>					<u> </u>																_	25				
JUL	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32

Ilustración 15. Programación mes de agosto escenario 0, 1,2.

		_		_	_	_			_	•	•				ES	CEI	NAR	10 0					•	•	•	•	•	•	•		
V1			J	7		J	8		J	13	J	18							J3	31								J	13		
V1.1								Г																							
V2		J	5		J	9	J11		J	14			J2	23		J2	29	J30			J3	3	J35		J3	39	J40	J	15		J48
V3								Г	Г															J3	37						
V3.1											J	20																			
V3.2															J2	28														J4	7
V3.3												J2	1									J	34								
V3.4						J	10																								
V3.5		J	2																												
V3.6																												J	14		
V3.7																									J3	38					
V3.8			J	6																											
V3.9											J	17											J3	6			J4	1			
V3.10								J:	12	J:	15	J19																			
V3.11			J	4																											
V3.12														J2	25	J2	27														
V3.13																					J3	32									
V3.14										J1	16		J2	24													J4	2	J4	16	
V3.15												J2	2																		
V4			J	3																											
V4.1		J1																													
V4.2															J2																
AGO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
															ES	CEI	NAR	IO 1													
V1		J1				J	8		J	13	J	18		24			J	30	J3	31	J3	32	J3	6			J4	2	J4		
V1.1			J	7		J	11	J:	12	J1	16	J2	1	J2	25						J3	33						J	15	J4	7
V2		J	_									20	J2	23			29									39			13		J48
V3		J			J	9						17				J27							34	J3	37	_	40		14		
V3.1			J			J	10				J	19			J2	28						J	35		J3	38	J4	1			
V4			J						J	14		J2	2																		
V4.1			J							_	15				J2	_															
AGO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			18	19	20	21	22	23	24	25	26	27	28	29	30	31
															ES	CEI		102					1								
V1						J		J:	12		J	18			25		J:	30				33					J4		J4		
V1.1						J	11		J	13			_	24							J3	32	J3	6				J	15	J4	7
V2		J							L					23			29									39					
V3		J1			J	_	4.0			J1	16	J2	1		_	J27			J3	31				Jä	37		J4				
V3.1			J:				10	L	L		_	17			J2	28						_	34		J3	_	40		13		_
V3,2			J					┝	L	_	_	19										J.	35	_		J	40	JZ	14		_
V3,3			J	b				_		1.0	J.	20	2																		140
V4		J	2	7	Н			_	J	14	 E	J2	2)C																J48
V4.1			J		Ш			L	L		15	L	L		26												<u> </u>				
AGO	- 1	1	~	^	5		7	10	1 ^	10	11	12	12	1 1	4-	10	17	18	10	20	24	22	23	24	25	26	27	28	20	\sim	

Ilustración 16. Programación mes de septiembre escenario 0, 1,2. **ESCENARIO 0** J8 J10 J3 J5 J6 J26 J30 **J33 J38** ٧1 V1.1 J39 V2 J11 J19 J20 J21 J32 J35 V3 V3.1 J13 J23 V3.2 V3.3 J18 J22 V3.4 J34 V3.5 J37 J43 J40 J29 V3.6 V3.7 J7 V3.8 J41 J12 J16 J25 J28 V3.9 **J1 J4** J17 V3.10 V3.11 J15 V3.12 J9 J27 V3.13 J24 V3.14 J36 V3.15 J42 V3.16 J2 J14 J31 ٧4 1 2 3 4 5 6 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 1 SEP **ESCENARIO 1** J13 J36 ٧1 J1 J5 J8 J20 J24 J31 J33 J42 J2 J7 J9 J11 J17 J22 J28 J32 J37 J43 V1.1 J6 J15 J26 V2 J41 J10 J16 J21 J29 J35 V3 J4 V3.1 J18 J27 J34 J40 J19 J23 V3.2 J30 **J38** V4 **J3** J12 J25 V4.1 J14 **J39** V4.2 1 2 3 4 5 6 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 1 SEP **ESCENARIO 2** J8 J11 J23 J28 J32 J36 ٧1 J5 J33 V1.1 **J7** J9 J24 J37 J6 J22 V2 J10 J34 J1 J16 J21 J29 J42 V3 J2 J13 J20 **J27** J30 J35 J43 V3.1 J15 J26 J31 J38 V3.2 J4 V3.3 J17 J25 J41 ٧4 J3 J12 J14 J39 V4.1 J18 J40 V4.2 B4.3 J19

15 16 17 18 19 20 21 22 23 24 25 26 27 28

6

SEP

7 8 9 10 11 12 13 14

Ilustración 17. Programación mes de octubre escenario 0, 1,2.

			-			•					•			E:	SCE	NAF	RIO	0						-			_			-
V1																														
V1.1					J8						J2	0										J2	27			J3	35	J3	39	
V2																						J2	28	J30		J3	34	J36	J37	J40
V3																							J	31						
V3.1									J1	L 5	J1	8													Jä	33				
V3.2											J1	9																		
V3.3																												J3	88	J42
V3.4																		J2	23											
V3.5							J:	10	J1	l 6	J17																			
V3.6				\perp					J1	13																				
V3.7								<u>L</u>													J2	25								
V3.8	J	2	_	\downarrow			J	9																						
V3.9	Ц	_	\perp	\downarrow																		J2	29							
V3.10			\perp																										J	11
V3.11		_	J4					L																						
V3.12	J:	L	J3	4	J6			J	12							J2	21	J22												
V3.13				4		_															_	24								
V3.14				4																	J2	26								
V3.15	Щ	_	4	4	J7		_	L	J1	L4													J	32						
V3.16				4				J	11																					
V4				4	J5		_	L																						
ОСТ	1	2	3 4	4	5 6	7	8	9	10	11	12	13	14					19	20	21	22	23	24	25	26	27	28	29	30	31
				_			_							E:	SCE		RIO	1							1					
V1	J:	-	J4	4	J8				J1	16						J2	21				J2	26		31		J3	34		J	12
V1.1	J:	2	_	4	J6						J2	0										J2	29			JS	35			
V2				_	J7				J1														28					J3	37	
V3		J:	3	4			_	9	J1		J1	9					J:	22			J2	25		32			J:	36	J	11
V3.1				4		L	J:	10		J13								J2	23			J2			Jä	33		J3		
V4	\sqcup		4	4	J5	_	_	_	11	J	17											J24						J3	88	
V4.1	H	_	_	+		<u> </u>	L	_	12		J18				_								-	30						10
ОСТ	1	2	3 4	4 .	5 6	7	8	9	10	11	12	13	14					19	20	21	22	23	24	25	26	27	28	29	30	31
<u> </u>					1	1	1	<u> </u>						E:	CE		RIO	2		1				ı	ı					1
V1	J:	_	J4			-	L	L	J1	l6						J2	21						29					J3	38	
V1.1	J	2	+	\downarrow						_	J2	0									J2	26		31		L				
V2	$oxed{\mathbb{H}}$			4			L		J1														28						37	
V3	Н	J:	3	+	J7	-	19		J1		J1	9					J	22			J2	25		32		_	35		39	
V3.1	Н	\dashv	+	+	J6	-	10	_	J1									J2	3				27		J	33	_	36		11
V4	\vdash	-	+		J5	_	L		11	J	17											J24				J3	34			10
V4.1		1	+	4	J8	_	_		12	44	J18	42	4.6	15	1.0	47	10	10	20	24	22	22		30	26	27	20	20		12
ОСТ	1	2	3 4	4	5 6	/	8	9	ΤÜ	11	12	13	14	15	16	Τ/	TΩ	19	20	21	22	23	24	25	26	27	28	29	30	31

Ilustración 18. Programación mes de noviembre escenario 0, 1,2.

								•							E	SCE	NAR	10 ()								-			-	
V1																					J2	26	J2	28	Jä	32	J33	J35	J37	J41	1
V1.1	J	1										J1	LO	J11			J2	1													
V2		Jŝ	3			J!	5						J	12	J:	L 5	J20		J2	22	J2	25	J2	27	Jä	30	J34	J36	J38	J39	9
٧3		J2	2												J:	L6															
V3.1																								J2	29						
V3.2																J	18								Jä	31					
V3.3																				J2	23										
V3.4										J	9																				
V3.5								J	8						J14																
V3.6						J	6													J2	24										
V3.7																														J4(0
V3.8																J	19														
V3.9		J	ļ										J	13		J	17														
V4							J	7																							
NOV	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	1
		•													E	SCE	NAR	10 :	1					•		•				•	
V1		Jä	3					J	8				J	12		J	17				J2	26		J2	29	J	34	J3	37	J40	0
V1.1		J	ŀ							J	9		J	13		J	18						J2	28	Jä	31				J41	1
V2	J	1										J1	LO		J:	L 5					J2	25	J2	27	Jä	30	J3	6		J 3 9	
٧3		J2	2			J	6						J	11	J:	L6	J2	1		J2	23				Jä	32	J3	35			
V3.1							J	7							J14					J2	24					J	33	J	88		
V4						J!	5									J	19														
V4.1																	20		-	22											
NOV	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	1
															Е	SCE	NAR	10 2	2												
V1	J	1						J	8				J	12							J2	26				J	33			J41	1
V1.1													J	13									J2	28		J	34	J3	37		
V2												J1	LO		J1	L5					J2	25					J3	6		J 3 9	
٧3		J2	2			J	6			J	9				J14		J2	1		J2	23			J2	29						
V3.1		Jŝ	3				J	7					J	11		J	17			J2	24				Jä	30	J3	35		J4(0
V3.2		J	ļ													J	18								Jä	31		J3	38		
V4						J!	5								J:	L 6			J2	22			J2	27	Jä	32					
V4.1																J	19														
V4.2																J	20														
NOV				_	-	_			-	10			_			16				_						26			29	30	1

Ilustración 19. Programación mes de diciembre escenario 0, 1,2.

			•										•	Е	SCE	NA	RIO (5					_		•	-	-				
V1												J	20	J22				J3	31	J3	35					J	39				
V1.1															J2	24	J28														
V2	J	3				J	8		J:	12	J1	5			J2	23	J27			J3	34				Jä	38	J40				
V3																							J3	86							
V3.1																									Jä	37					
V3.2																J	29														
V3.3							J1	Ю			J1	7																			
V3.4												J:	18																		
V3.5			J5																												
V3.6									J:	13	J14																				
V3.7	J1		J4																												
V3.8																J	26														
V3.9																													J42		
V3.10			J	6											J2	25												J	l1		
V3.11												J	21							3	33										
V3.12																														J	1 3
V3.13				J	7																										
V3.14												J:	19																		
V3.15											J1	.6							3	32											
V3.16	J2																														
V3.17								J9)	J	11																				
V4																		J30													
DIC	1 2	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	1
														Е	SCE	NΑ	RIO :	1													
V1	J1		J	6						J	14	J	20			J	2 9		J3	32						J	39				
V1.1	J2					J	8					J:	18		J2	23		J3	31	J3	33					J	40	JZ	11		
V2											J1	5			J2	25				J3	34				Jä	38				J	13
V3			J4	J	7			J9)		J1	<u>.</u> 6			J2	24		J30					J3	86					J42		
V3.1			J5				J1	LO	J:	13		J	21			J	26			3	35				J	37					
V4		J3							J:	12	J1	7				J	27														
V4.1										J11		J:	19			J	28														
DIC	1 2	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	1
														Е	SCE	NA	RIO 2	2													
V1			J	6								J:	18		J2	23		J3	31							J	39				
V1.1										J	14	J:	20			J	28		J3	32						J	40				
V2											J1	5	J	22		J	29								Jä	38				J	13
V3	J1		J4	J	7			J9)		J1	.7			J2	24	J3	0		J3	33		J3	36				J	11		
V3.1	J2		J5			J	8			111		J.	21		J2	25				J3	35				Jä	37			J42		
V4		J3					J1	0	J:	12		J:	19			J	26			J3	34										
V4.1									J:	13	J1	6				J	27														
	1 2		+	1	1	-							1					_		-	-				_		_				1

7.1. Análisis de los resultados

Una vez simulados los 2 escenarios propuestos, se observó que en el 100% de los meses se encontró una programación que disminuye los costos del escenario 0, en la ilustración 20 se muestra la comparación de costos de los 3 escenarios a lo largo del 2018.

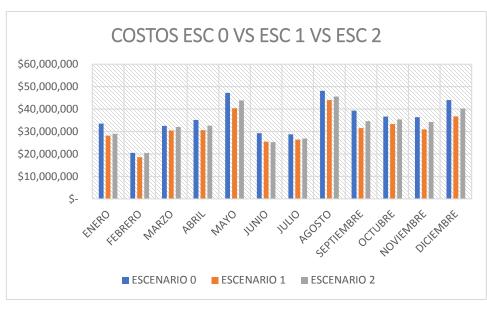


Ilustración 20. Costo escenario 0 vs 1 vs 2.

Fuente: elaboración propia.

De manera general, se evidencia una mayor reducción de los costos en el escenario 1, seguido por el escenario 2 y por último el escenario 0, el cual contó con los mayores costos en todos los meses. Tomando como base los datos del escenario 0, descritos anteriormente, encontramos que el escenario 1 tiene un porcentaje de ahorro anual del 13%, la ilustración 21, muestra el porcentaje de ahorro en cada mes en comparación al escenario 0, el mes con el mayor ahorro fue septiembre, donde se presentaron 43 viajes, de los cuales el 62.7% fueron con origen Bogotá, en la planeación actual de la empresa de esos viajes solo el 29.62% fueron realizados con vehículos propios, mientras que con el modelo propuesto el 81.48% de los viajes con origen en Bogotá fueron asignados a vehículos propios. Por otra parte, el 37.2% de los viajes tuvieron su origen en ciudades diferentes a Bogotá, de estos viajes el 50% fueron realizados con vehículos propios, teniendo que asumir el costo del trayecto

vacío, mientras que con el modelo propuesto solo el 12.5% de los viajes que iniciaban fuera de Bogotá fueron asignados a los vehículos propios, el ahorro logrado en la programación planteada fue gracias al mayor uso de los vehículos propios. Por otra parte el mes de marzo fue el mes con menos ahorro, este mes conto con 32 viajes, de los cuales el 59.37% iniciaron en Bogotá, de estos viajes en la programación realizada por la empresa el 57.89% fueron con vehículos propios, mientras que con el modelo propuesto se realizaron el 84.21% de los viajes con origen Bogotá con los vehículos propios, así mismo, el 40.62% del total de viajes iniciaron fuera de Bogotá, de los cuales en la programación de la empresa el 38.46% fueron realizados por vehículos propios, mientras que con la programación del modelo propuesto solo se asignaron el 15.38% de los viajes que iniciaron fuera de Bogotá a vehículos propios. Nuevamente el mayor uso de los vehículos propios reflejo un ahorro en los costos, aunque la cantidad de viajes no permitió que se viera reflejado un mayor ahorro en comparación al mes de septiembre.

Ilustración 21. Porcentaje ahorrado mensualmente escenario 1.

Fuente: elaboración propia.

En el escenario 1 el uso de vehículos propios aumento en un 10.71% con respecto al escenario 0, aumentando en un 19.78% el uso de los vehículos tipo 1 que son con

los que más cuenta la empresa, la ilustración 22 muestra el porcentaje usado de cada tipo de vehículo.

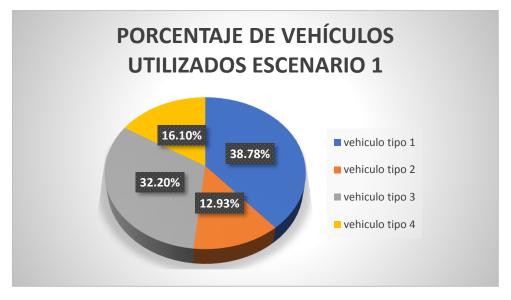


Ilustración 22. Vehículos utilizados escenario 1.

Fuente: elaboración propia.

Adicionalmente, se observó un aumento del 39% en el uso de vehículos propios en los trayectos que iniciaban en Bogotá, entre los escenarios 0 y 1. Debemos recordar que los viajes con origen en Bogotá son los que presentan menor costo para los vehículos propios ya que no deben incurrir en costos de relocalización, el porcentaje del uso de vehículos cuando el origen del viaje es Bogotá se muestra en la ilustración 23.

Ilustración 23. Vehículos utilizados con origen Bogotá escenario1.

Teniendo en cuenta la ilustración anterior, se analizó del total de viajes realizados por vehículos propios que porcentaje inicio desde Bogotá y que porcentaje desde otras ciudades, la ilustración 24 muestra estos datos. En comparación con el escenario 0, en el escenario 1, en la cantidad total de viajes realizados por vehículos propios hubo un aumento del 27% en la asignación de estos vehículos a viajes que inician en Bogotá, realizando solo un 12% del total de viajes desde otras ciudades.

Ilustración 24. Origen viajes realizados por vehículos propios escenario 1.

Fuente: elaboración propia.

Por otra parte, en el escenario 1 los vehículos propios aumentaron su uso en los transportes realizados los fines de semana en un 13%. La ilustración 25 se observa el uso de los vehículos durante los fines de semana.

Ilustración 25. Vehículos utilizados en fin de semana escenario 1.

Por otra parte, el escenario 2 en comparación con el escenario 0 generó un ahorro del 7% anual en los costos de transporte, en la ilustración 26 se encuentra el porcentaje de ahorro mensual, se evidencia un comportamiento similar en los meses que se obtuvo mayor y menor ahorro en comparación del escenario 1.

Ilustración 26. Porcentaje costo ahorrado mensualmente escenario 2.

En el escenario 2 el uso de vehículos propios disminuyó en un 4% con respecto al escenario 0, a pesar de esto el uso de vehículos tipo 1 aumentó en un 9%, mientras que el de vehículos tipo 2 disminuyó en un 13%. La ilustración 27 muestra el porcentaje usado de cada tipo de vehículo.

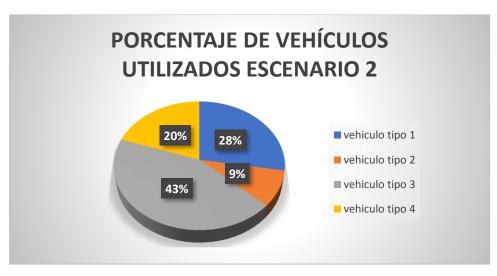


Ilustración 27. Vehículos utilizados escenario 2.

Fuente: elaboración propia.

Se observó un aumento del 11% en el uso de vehículos propios en los trayectos que iniciaban en Bogotá, entre los escenarios 0 y 2. El porcentaje del uso de vehículos cuando el origen del viaje es Bogotá se muestra en la ilustración 28.

Ilustración 28. Vehículos utilizados con origen Bogotá escenario 2.

Teniendo en cuenta la ilustración anterior, se analizó del total de viajes realizados por vehículos propios que porcentaje inicio desde Bogotá y que porcentaje desde otras ciudades, la ilustración 29 muestra estos datos. En comparación con el escenario 0, en el escenario 2, en la cantidad total de viajes realizados por vehículos propios hubo un aumento del 24% en la asignación de estos vehículos a viajes que inician en Bogotá, realizando solo un 15% del total de viajes desde otras ciudades.

Ilustración 29. Origen viajes realizados por vehículos propios escenario 2.

Fuente: elaboración propia.

Por último, el escenario 2 garantiza que los vehículos propios solo sean utilizados en los servicios programados en un fin de semana cuando no exista la posibilidad de programar vehículos alquilados. Por este motivo se evidencia una reducción del 31% en los vehículos propios que realizaron trayectos los fines de semana. La ilustración 30 se observa el uso de los vehículos durante los fines de semana.

Ilustración 30. Vehículos utilizados en fin de semana escenario 2.

8. Recomendaciones

Una vez analizados los resultados obtenidos, estas son algunas recomendaciones para la empresa:

- El costo disminuyó en el escenario 1 y 2 debido principalmente a dos factores, el aumento del uso de vehículos propios y una mayor asignación de estos a los viajes que inician en Bogotá. Esto refleja que la empresa puede intentar abandonar su política de mantener los vehículos propios en Bogotá y empezar a programarlos en la mayor cantidad de servicios que inicien desde esta ciudad.
- El uso de vehículos propios en viajes que inician en otras ciudades debe intentar reducirse al mínimo, debido a que son los costos más elevados que debe asumir la compañía, adicionalmente generan recorridos vacíos aumentando el consumo de combustible y contaminación; para esto, se recomienda generar alianzas con contratistas que se radiquen en las ciudades diferentes a Bogotá donde inician la mayor cantidad de viajes.

- Los vehículos alquilados son una parte vital de la empresa, no podría realizarse el total de los viajes sin contar con estos, pero la empresa puede pensar en minimizar esta flota, los resultados mostraron que ningún mes requirió más de 5 vehículos de cada tipo para cumplir con la programación total, si la empresa puede fidelizar este número de vehículos ahorraría tiempo en los procesos operativos que maneja, como la apertura de una nueva hoja de vida o las inspecciones requeridas. Adicionalmente se podría llegar a algún tipo de acuerdo con los contratistas donde se les garanticen cierta cantidad de viajes siempre y cuando disminuyan su costo.
- El escenario 2 de igual manera encontró una programación reduciendo el 7% del costo anual real, garantizando el uso de los vehículos propios únicamente entre semana y los fines de semana donde no se pudiera contar con alquilados. Este modelo resulta interesante para la compañía ya que si sigue aumentando la cantidad de servicios como ha venido ocurriendo en los últimos años en algún punto deberá asignar fines de semana de descanso para cada conductor y es un buen punto de referencia para saber que el modelo sigue encontrando un costo menor al actual.

9. Conclusiones y trabajo futuro

El modelo de programación lineal para la programación de vehículos en una empresa de transporte desarrollado a lo largo del presente documento se presenta como una herramienta de utilidad en la toma de decisiones para esta empresa, debido a que bajo este modelo puede reducir sus costos operativos y reflejarlo en la disminución de sus precios de venta, logrando que la empresa se destaque entre sus competidores y llame la atención de nuevos clientes.

Este modelo de programación puede ser adaptado a otros tipos de empresas, variando las características o necesidades, debido a que las empresas de carga por carretera en Colombia tienen grandes similitudes, por ejemplo, en el uso de una flota

de vehículos heterogénea, el modelo puede adaptarse a una mayor variedad y/o cantidad de vehículos en sus parámetros, tambien puede adicionar nuevas rutas teniendo conocimiento de los costos y duración de estas. Así mismo, la cantidad de viajes a programar puede aumentar o disminuir de acuerdo con la demanda que este presentando la empresa en ese momento, teniendo en cuenta la cantidad de vehículos disponibles según las restricciones establecidas. Adicionalmente, el horizonte de tiempo puede variar y ser establecido según las necesidades de la empresa, brindando a este modelo un gran campo de aplicación.

Luego de ejecutar los datos reales de la empresa en los escenarios propuestos se puede concluir lo siguiente:

- Se comprobó que, bajo las mismas características y datos de la empresa, mediante el uso del modelo propuesto se puede llegar a reducir hasta en un 13% anual los costos de transporte.
- Restringir el uso de los vehículos propios en la realización de viajes los fines de semana mostró una reducción del 7% en comparación a la programación actual.
- El modelo propuesto generó una reducción en la reubicación de los vehículos propios, ahorrando el 6% de los costos del año, además de la disminución de CO2 por los recorridos vacíos.

Como trabajo futuro, se espera incorporar este modelo a una plataforma digital, generando el parámetro de entrada en tiempo real, dependiendo de donde se encuentran ubicados los vehículos y cuáles son los viajes programados, adicionalmente se mejoraría el tiempo de respuesta conociendo en tiempo real el momento exacto en que un vehículo terminó un servicio o está disponible y pueda ser asignado al siguiente servicio que este programado. También permitiría el ingreso de nuevos servicios que serían recalculados de inmediato arrojando una nueva asignación de vehículos.

10. Referencias

Alinaghian, M., & Naderipour, M. (2016). A novel comprehensive macroscopic model for time-dependent vehicle routing problem with multi-alternative graph to reduce fuel consumption: A case study. *Computers & Industrial Engineering*, 99, 210-222. doi:10.1016/j.cie.2016.07.029

Androutsopoulos, K. N., & Zografos, K. G. (2017). An integrated modelling approach for the bicriterion vehicle routing and scheduling problem with environmental considerations. *Transportation Research Part C*, 82, 180-209. doi:10.1016/j.trc.2017.06.013

ANIF. (2019). La gran encuesta pyme

Asociación Nacional de Industriales. (2019). Colombia: Balance 2018 y perspectivas 2019

Ballesteros Riveros, D. P., & Ballesteros Silva, P. P. (2008). *Importance of logistics*management Facultad de Ciencias Básicas. Retrieved from

https://www.openaire.eu/search/publication?articleId=od
3056::6ed46151ca298

f904063f874ea93d943

Banse, K., Herrera, L. F., Nunez, M., Navarro, J. C., & Chavarriaga, J.ITS development in colombia: Challenges and opportunities. Paper presented at the i-vi. doi:10.1109/ICAIW.2018.8554991 Retrieved from https://ieeexplore.ieee.org/document/8554991

- Bellman, R. E., 1920. (1956). *On a routing problem*. Santa Monica, Calif: Rand Corp. Retrieved from https://catalog.hathitrust.org/Record/102314203
- Bernal Torres, C. A., Frost González, J. S., & Sierra Arango, H. D. (2014). Importancia de la gerencia del conocimiento: contrastes entre la teoría y la evidencia empírica. *Estudios Gerenciales*, 30(130), 65-72. doi:10.1016/j.estger.2014.01.011 Retrieved from https://www.sciencedirect.com/science/article/pii/S0123592314000448
- Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the art classification and review. *Computers & Industrial Engineering*, 99, 300-313. doi:10.1016/j.cie.2015.12.007
- Castillo, J. C., Restrepo, Á, Tibaquirá, J. E., & Quirama, L. F. (2019). Estrategias de eficiencia energética en vehículos livianos del transporte por carretera en colombia. Revista UIS Ingenierías, 18(3), 129-140. doi:10.18273/revuin.v18n3-2019013
- Cecilia Briceño, Harry Moroz, & Julie Rozenberg. (2015). *Road networks, accessibility, and resilience:*

The cases of colombia, ecuador, and peru

- Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. *Operations Research*, 12(4), 568-581. doi:10.1287/opre.12.4.568
- CONFECAMARAS. (2018). Informe de dinámica empresarial en colombia

CONPES, & CONSEJO NACIONAL DE POLÍTICA ECONÓMICA Y SOCIAL

REPÚBLICA DE COLOMBIA DEPARTAMENTO NACIONAL DE

PLANEACIÓN. (2019). POLÍTICA PARA LA MODERNIZACIÓN DEL SECTOR

TRANSPORTE

AUTOMOTOR DE CARGA Retrieved from https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3963.pdf

- DANE. (2019). Boletín Técnico Índice de Costos del Transporte de Carga por Carretera (ICTC). Barcelona: Marge Books. Retrieved from https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5045282
- Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. *Management Science*, 6(1), 80-91. doi:10.1287/mnsc.6.1.80
- Departamento Nacional de Planeación. (2018). Informe de resultados encuesta nacional logística 2018
- Editorial La República, S. A. S. (2017). Sobreoferta de empresas y vehículos, uno de los problemas para los transportadores de carga. Retrieved from https://www.larepublica.co/economia/hay-sobreoferta-de-empresas-y-vehiculos-de-transporte-de-carga-2548511
- Ernst, A. T., Horn, M., Kilby, P., & Krishnamoorthy, M. (2010). Dynamic scheduling of recreational rental vehicles with revenue management extensions. *Journal of the Operational Research Society*, 61(7), 1133-1143. doi:10.1057/jors.2009.78

- Ernst, A. T., Gavriliouk, E. O., & Marquez, L. (2011). An efficient lagrangean heuristic for rental vehicle scheduling. *Computers and Operations Research*, *38*(1), 216-226. doi:10.1016/j.cor.2010.04.014
- Ernst, A. T., Horn, M., Krishnamoorthy, M., Kilby, P., Degenhardt, P., & Moran, M. (2007). Static and dynamic order scheduling for recreational rental vehicles at tourism holdings limited. *Interfaces*, *37*(4), 334-341. doi:10.1287/inte.1060.0265
- Fagoyinbo, Akinbo, Ajibode, & Olaniran. (2004). Maximization of profit in manufacturing industries using linear programming techniques: Geepee nigeria limited
- Faiz, T. I., Vogiatzis, C., & Noor-E-Alam, M. (2019). A column generation algorithm for vehicle scheduling and routing problems. *Computers & Industrial Engineering*, 130, 222-236. doi:10.1016/j.cie.2019.02.032
- Fernández Alarcón, V. (2006). *Introducción a la investigación en ciencias sociales*.

 Retrieved from https://recercat.cat/handle/2072/186197
- Francisco Muñoz, & logisticamx. (2015). Optimización del transporte con tecnología.

 Retrieved from http://www.logisticamx.enfasis.com/articulos/72007-optimizacion-del-transporte-tecnologia
- Gabriel Agudelo, Miguel Aigneren, Jaime Ruiz. (2014). Diseños de investigación experimental y no-experimental. Retrieved from https://www.academia.edu/14012422/DISE%C3%91OS_DE_INVESTIGACI%C3%9
 3N_EXPERIMENTAL_Y_NO-EXPERIMENTAL

- Garza-Reyes, J. A., Forero, J. S. B., Kumar, V., Villarreal, B., Cedillo-Campos, M. G., & Rocha-Lona, L. (2017). Improving road transport operations using lean thinking.

 *Procedia Manufacturing, 11, 1900-1907. doi:10.1016/j.promfg.2017.07.332
- Ghannadpour, S. F., & Zarrabi, A. (2019). Multi-objective heterogeneous vehicle routing and scheduling problem with energy minimizing. *Swarm and Evolutionary*Computation, 44, 728-747. doi:10.1016/j.swevo.2018.08.012
- Guedes, P. C., Borenstein, D., Sâmara Visentini, M., de Araújo, Olinto César Bassi, & Kummer Neto, A. F. (2019). Vehicle scheduling problem with loss in bus ridership. Computers and Operations Research, 111, 230-242. doi:10.1016/j.cor.2019.07.002
- Guerrero González, N. (2012). Estrategia para la minimización de costos logísticos:

 Aplicaciones en una empresa piloto = strategy for minimizing logistics costs: A pilot enterprise applications Retrieved from <a href="https://www.openaire.eu/search?q=&Search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.openaire.eu/search="https://www.o
- Hertz, A., Schindl, D., & Zufferey, N. (2009). A solution method for a car fleet management problem with maintenance constraints. *Journal of Heuristics*, 15(5), 425-450. doi:10.1007/s10732-008-9072-4
- IDEAM, PNUD, MADS, DNP, CANCILLERÍA. (2015). *Colombia*. BOGOTA D.C.: Libros de la Catarata.
- Kulkarni, S., Krishnamoorthy, M., Ranade, A., Ernst, A. T., & Patil, R. (2018). A new formulation and a column generation-based heuristic for the multiple depot vehicle scheduling problem. *Transportation Research Part B*, 118, 457-487.
 doi:10.1016/j.trb.2018.11.007

Kulkarni, S., Patil, R., Krishnamoorthy, M., Ernst, A., & Ranade, A. (2018). A new two-stage heuristic for the recreational vehicle scheduling problem. *Computers and Operations Research*, *91*, 59-78. doi:10.1016/j.cor.2017.11.004

La Asociación de Plan Regional. (2016). La importancia del transporte de carga

Lenstra, J. K., & Rinnooy Kan, A. H. G. (1981). Complexity of vehicle routing and scheduling problems. *Networks*, 11(2), 221-227. doi:10.1002/net.3230110211

M. Mocholu Arce, & R. Sala Garrido. (1993). *Programación lineal metodología y problemas*

Maria Lazarte, Barnaby Lewis, Clare Naden. (2017). ISOfocus septiembre-octubre 2017.

Ministerio de Transporte. (2014). Transporte en cifras estadisticas 2013. Bogota D.C:

Ministerio de transporte. (2019). Desempeño logistico 2017 2018. Bogota D.C:

Ministerio de trasnporte. (2018). Transporte en cifras estadisticas 2017. Bogota D.C.:

Park, Y., & Song, S. (1997). Vehicle scheduling problems with time-varying speed.

*Computers & Industrial Engineering, 33(3), 853-856. doi:10.1016/S0360-8352(97)00265-9

Revista Dinero. (2018). ¿Para dónde irá el transporte de carga en 2019? Retrieved from http://www.dinero.com/empresas/articulo/futuro-del-transporte-de-carga-por-carretera-en-colombia-2019/264786

- Revista semana. (2017). Líos sin resolver del transporte. Retrieved from https://www.semana.com/economia/articulo/cinco-lios-sin-resolver-del-transporte/419344-3
- Tamannaei, M., & Rasti-Barzoki, M. (2019). Mathematical programming and solution approaches for minimizing tardiness and transportation costs in the supply chain scheduling problem. *Computers & Industrial Engineering*, 127, 643-656. doi:10.1016/j.cie.2018.11.003
- Tang, Y., Liu, R., Wang, F., Sun, Q., & Kandil, A. A. (2018). Scheduling optimization of linear schedule with constraint programming. *Computer-Aided Civil and Infrastructure Engineering*, 33(2), 124-151. doi:10.1111/mice.12277
- Toro-Ocampo, E. M., Franco-Baquero, J. F., & Gallego-Rendón, R. A. (2016). Modelo matemático para resolver el problema de localización y ruteo con restricciones de capacidad considerando flota propia y subcontratada. *Ingeniería, Investigación Y Tecnología, 17*(3), 357-369. doi:10.1016/j.riit.2016.07.006
- UNAD Universidad Nacional Abierta y a Distancia. (2014). Investigación básica, aplicada y profesional colombia UNAD universidad nacional abierta y a distancia. Retrieved from
 - https://www.academia.edu/7746603/Investigaci%C3%B3n_B%C3%A1sica_Aplicada _v_Profesional_-_Colombia_-_UNAD_Universidad_Nacional_Abierta_y_a_Distancia
- Wang, Z., & Sheu, J. (2019). Vehicle routing problem with drones. *Transportation Research Part B*, 122, 350-364. doi:10.1016/j.trb.2019.03.005

Zonalogistica. (2017). La gestión del transporte. parte III: La estrategia del transporte.

 $Retrieved\ from\ \underline{https://zonalogistica.com/la-gestion-del-transporte-parte-iii-la-}$

estrategia-del-transporte/

11. Anexos

Anexos A. Tabla de costos entre rutas año 2018.

costos	Barranguilla	Bogotá	Bucaramanga	Cajica	Cali	Cartagena	Cucuta	Ibague	Medellin	Rionegro	Santa Marta	Tunja
Barranguilla VP t	\$ -	\$ 767,304	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 1,214,686	\$ 1,037,108	\$ -	\$ -	\$ -
Barranguilla VP s	\$ -	\$ 920,765	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 1.457.623	\$ 1,728,513	\$ -	\$ -	\$ -
Barranguilla VA t	\$ -	\$ 1,347,806	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 1,720,250	\$ 1,205,033	\$ -	\$ -	\$ -
Barranguilla VA s	\$ -	\$ 1,622,760	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 2,064,300	\$ 1,928,053	\$ -	\$ -	\$ -
Bogotá VP t	\$ 1,402,907	\$ -	\$ 661,016	\$ -	\$ 850,508	\$ 1,045,701	\$ -	\$ -	\$ 525,023	\$ 415,023	\$ -	\$ -
Bogotá VP s	\$ 1,292,696	\$ -	\$ 778,519	\$ -	\$ 962,803	\$ 1,254,841	\$ -	\$ -	\$ 677,154	\$ 617,154	\$ -	\$ -
Bogotá VA t	\$ 1,605,577	\$ -	\$ 887,274	\$ -	\$ 947,029	\$ 1,607,973	\$ -	\$ -	\$ 877,536	\$ 826,818	\$ -	\$ -
Bogotá VA s	\$ 1,851,316	\$ -	\$ 1,064,729	\$ -	\$ 1,084,446	\$ 1,725,255	\$ -	\$ -	\$ 1,053,043	\$ 961,214	\$ -	\$ -
Bucaramanga VP t	\$ -	\$ 840,229	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Bucaramanga VP s	\$ -	\$ 1,008,275	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Bucaramanga VA t	\$ -	\$ 1,771,200	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Bucaramanga VA s	\$ -	\$ 2,125,440	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Cajica VP t	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Cajica VP_s	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Cajica VA_t	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Cajica VA_s	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Cali VP_t	\$ 1,209,366	\$ 441,929	\$ 1,081,748	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 827,328	\$ -	\$ -
Cali VP_s	\$ 1,511,707	\$ 746,005	\$ 1,298,097	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 957,959	\$ -	\$ -
Cali VA_t	\$ 1,693,835	\$ 959,600	\$ 1,545,354	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 978,384	\$ -	\$ -
Cali VA_s	\$ 2,032,602	\$ 1,085,370	\$ 1,854,425	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 1,085,370	\$ -	\$ -
Cartagena VP_t	\$ -	\$ 1,506,459	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 582,668	\$ -
Cartagena VP_s	\$ -	\$ 1,883,074	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 699,202	\$ -
Cartagena VA_t	\$ -	\$ 1,776,151	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 832,383	\$ -
Cartagena VA_s	\$ -	\$ 1,967,600	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 998,860	\$ -
Cucuta VP_t	\$ -	\$ 787,920	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Cucuta VP_s	\$ -	\$ 984,900	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Cucuta VA_t	\$ -	\$ 1,035,153	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Cucuta VA_s	\$ -	\$ 1,183,500	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Ibague VP_t	\$ -	\$ 526,756	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Ibague VP_s	\$ -	\$ 632,107	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Ibague VA_t	\$ -	\$ 684,783	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Ibague VA_s	\$ -	\$ 821,739	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Medellin VP_t	\$ -	\$ 595,023	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Medellin VP_s	\$ -	\$ 737,154	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Medellin VA_t	\$ -	\$ 859,671	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Medellin VA_s	\$ -	\$ 1,185,600	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Rionegro VP_t	\$ -	\$ 562,989	\$ -	\$ -	\$ 787,328	\$ 941,738	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Rionegro VP_s	\$ -	\$ 531,849	\$ -	\$ -	\$ 897,959	\$ 1,130,086	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Rionegro VA_t	\$ -	\$ 813,441	\$ -	\$ -	\$ 948,384	\$ 1,345,340	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Rionegro VA_s	\$ -	\$ 936,628	\$ -	\$ -	\$ 1,035,370	\$ 1,614,408	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Santa Marta VP_t	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Santa Marta VP_s	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Santa Marta VA_t	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Santa Marta VA_s	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Tunja VP_t	\$ -	\$ -	\$ -	\$ 413,071	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Tunja VP_s	\$ -	\$ -	\$ -	\$ 463,500	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Tunja VA_t	\$ -	\$ -	\$ -	\$ 536,992	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Tunja VA_s	\$ -	\$ -	\$ -	\$ 644,391	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -

Anexos B. Listado viajes primer cuatrimestre de 2018 con el tipo de vehículo usado.

J	Dia	Ori	Des	Veh	J	Dia	Ori	Des	Veh	J	Dia	Ori	Des	Veh	J	Dia	Ori	Des	Veh
j1	03/01/18	BOG	RIO	3	j1	01/02/18	MED	BOG	1	j1	01/03/18	BOG	RIO	2	j1	02/04/18	BOG	RIO	3
j2	03/01/18	BAR	MED	3	j2	01/02/18	BOG	RIO	3	j2	02/03/18	CAR	SAN	3	j2	02/04/18	BAR	IBA	3
j3	03/01/18	CAL	BAR	2	j3	02/02/18	BOG	RIO	2	j3	02/03/18	RIO	BOG	2	j3	03/04/18	RIO	BOG	3
j4	04/01/18	BOG	CAL	3	j4	05/02/18	BAR	IBA	3	j4	06/03/18	IBA	BOG	1	j4	03/04/18	CAL	BOG	2
j5	04/01/18	BOG	CAL	3	j5	06/02/18	BOG	RIO	2	j5	06/03/18	BOG	RIO	2	j5	03/04/18	BOG	RIO	3
j6	04/01/18	BOG	RIO	1	j6	06/02/18	RIO	BOG	3	j6	10/03/18	BOG	RIO	1	j6	03/04/18	BOG	CAL	3
j7	05/01/18	RIO	BOG	1	j7	06/02/18	RIO	BOG	4	j7	12/03/18	RIO	BOG	3	j7	03/04/18	BOG	CAL	3
j8	07/01/18	CAL	BUC	3	j8	06/02/18	RIO	BOG	3	j8	13/03/18	BOG	RIO	2	j8	04/04/18	BOG	RIO	1
j9	10/01/18	BAR	MED	2	j9	08/02/18	BOG	RIO	1	j9	14/03/18	CAR	SAN	4	j9	05/04/18	BOG	BAR	3
j10	10/01/18	BOG	RIO	1	j10	09/02/18	BOG	RIO	2	j10	15/03/18	BAR	MED	3	j10	06/04/18	BOG	BUC	2
j11	12/01/18	BOG	RIO	4	j11	10/02/18	BUC	BOG	1	j11	15/03/18	BOG	MED	1	j11	07/04/18	BOG	CAL	1
j12	12/01/18	BAR	IBA	1	j12	13/02/18	BOG	MED	2	j12	20/03/18	RIO	BOG	1	j12	07/04/18	RIO	CAR	4
j13	13/01/18	RIO	BOG	4	j13	14/02/18	CAR	SAN	3	j13	21/03/18	BAR	BOG	3	j13	09/04/18	BOG	RIO	3
j14	15/01/18	BOG	RIO	1	j14	14/02/18	BOG	BAR	4	j14	23/03/18	BOG	RIO	1	j14	10/04/18	CAL	BOG	1
j15	16/01/18	RIO	BOG	2	j15	16/02/18	BOG	RIO	2	j15	21/03/18	BOG	CAL	3	j15	10/04/18	CUC	BOG	2
j16	16/01/18	MED	BOG	1	j16	18/02/18	RIO	BOG	2	j16	22/03/18	BOG	BUC	3	j16	11/04/18	BOG	RIO	1
j17	17/01/18	CAR	SAN	3	j17	18/02/18	BOG	RIO	1	j17	22/03/18	BOG	CAL	3	j17	12/04/18	RIO	BOG	1
j18	18/01/18	BOG	RIO	2	j18	20/02/18	BOG	BAR	2	j18	23/03/18	CAL	RIO	1	j18	12/04/18	RIO	BOG	3
j19	19/01/18	BAR	BOG	4	j19	20/02/18	BOG	RIO	3	j19	23/03/18	BOG	RIO	3	j19	13/04/18	MED	BOG	3
j20	23/01/18	RIO	BOG	4	j20	21/02/18	BOG	RIO	3	j20	24/03/18	CAR	BOG	4	j20	14/04/18	BAR	BOG	3
j21	24/01/18	BOG	RIO	1	j21	22/02/18	RIO	BOG	3	j21	24/03/18	BOG	CAR	3	j21	14/04/18	BOG	RIO	3
j22	27/01/18	BAR	BOG	4	j22	23/02/18	BOG	RIO	1	j22	24/03/18	BOG	MED	2	j22	18/04/18	RIO	CAL	3
j23	27/01/18	BOG	RIO	1	j23	26/02/18	BOG	RIO	2	j23	26/03/18	BOG	RIO	1	j23	18/04/18	BOG	RIO	2
j24	28/01/18	CUC	BOG	3						j24	26/03/18	BOG	CAL	1	j24	19/04/18	BOG	RIO	4
j25	29/01/18	MED	BOG	3						j25	26/03/18	BOG	CAL	3	j25	19/04/18	CAL	BAR	3
j26	29/01/18	BOG	RIO	2						j26	27/03/18	CAL	BAR	3	j26	20/04/18	RIO	BOG	4
j27	29/01/18	BOG	RIO	4						j27	27/03/18	BOG	MED	2	j27	21/04/18	CUC	BOG	3
j28	30/01/18	BOG	RIO	3						j28	28/03/18	BOG	BAR	4	j28	23/04/18	CAL	BOG	3
j29	30/01/18	BOG	RIO	3						j29	31/03/18	BAR	BOG	3	j29	25/04/18	BOG	RIO	2
j30	30/01/18	RIO	BOG	2						j30	31/03/18	CAL	RIO	1	j30	25/04/18	CAR	SAN	4
										j31	31/03/18	BOG	CAL	2	j31	26/04/18	RIO	BOG	2
										j32	31/03/18	BOG	CAL	3	j32	27/04/18	CAL	RIO	4
															j33	27/04/18	RIO	BOG	4
															j34	28/04/18	BOG	RIO	2
															j35	30/04/18	BOG	RIO	3

*Identificación de las ciudades por sus iniciales

BARRANQUILLA	BOGOTA	SUCARAMANG/	CAJICA	CALI	CARTAGENA	CUCUTA	IBAGUE	MEDELLIN	RIONEGRO	SANTA MARTA	TUNJA
BAR	BOG	BUC	CAI	CAL	CAR	CUC	IBA	MFD	RIO	SAN	TUN

Anexos C. Listado viajes segundo cuatrimestre de 2018 con el tipo de vehículo usado.

J	Dia	Ori	Des	Veh	J	Dia	Ori	Des	Veh	J	Dia	Ori	Des	Veh	J	Dia	Ori	Des	Veh
j1	01/05/18	RIO	BOG	3	j1	01/06/18	RIO	BOG	1	j1	04/07/18	RIO	BOG	3	j1	01/08/18	BAR	BOG	4
j2	02/05/18	CUC	BOG	3	j2	01/06/18	RIO	BOG	3	j2	05/07/18	CAL	BUC	3	j2	02/08/18	RIO	BOG	3
j3	03/05/18	CAL	BOG	3	j3	02/06/18	BOG	RIO	1	j3	05/07/18	BOG	RIO	2	j3	02/08/18	CAR	BOG	4
j4	03/05/18	BOG	CAL	1	j4	05/06/18	RIO	BOG	3	j4	06/07/18	RIO	BOG	2	j4	02/08/18	CAR	BOG	3
j5	03/05/18	BOG	RIO	2	j5	05/06/18	BOG	RIO	3	j5	06/07/18	RIO	CAL	3	j5	02/08/18	BOG	RIO	2
j6	04/05/18	RIO	BOG	2	j6	06/06/18	BOG	RIO	1	j6	07/07/18	BOG	RIO	1	j6	02/08/18	CAR	BOG	3
j7	04/05/18	BOG	CAR	3	j7	06/06/18		RIO	3	j7	09/07/18	BOG	RIO	3	j7	03/08/18	BOG	RIO	1
j8	04/05/18			4	j8	07/06/18		RIO	3	j8	10/07/18		RIO	2	j8	05/08/18			1
j9	04/05/18		BOG	4	j9	07/06/18			3	j9	13/07/18			1	j9	05/08/18	RIO	BOG	2
j10	04/05/18			3	j10	07/06/18	RIO	BOG	3	j10	14/07/18	_	BAR	3	j10	06/08/18	_	BOG	3
j11	04/05/18		BOG	3	j11	08/06/18			3	j11	14/07/18	BOG		1	j11	06/08/18			2
j12	05/05/18			4	j12	08/06/18			4	j12	18/07/18		IBA	3	j12	08/08/18			3
j13	05/05/18			2	j13	08/06/18			2	j13	18/07/18			4	j13	09/08/18			1
j14	08/05/18			1	j14	08/06/18			1	j14	18/07/18		RIO	2	j14	09/08/18	RIO	BOG	2
j15	09/05/18	RIO	BOG	1	j15	13/06/18	RIO	BOG	4	j15	18/07/18		RIO	1	j15	10/08/18	RIO	BOG	3
j16	10/05/18		RIO	1	j16	13/06/18		RIO	3	j16	19/07/18	RIO	BOG	2	j16	10/08/18			3
j17	11/05/18			3	j17	13/06/18	RIO	BOG	3	j17	22/07/18		RIO	1	j17	11/08/18	CAR		3
j18	11/05/18			3	j18	15/06/18	_	RIO	2	j18	23/07/18		RIO	3	j18	11/08/18			1
j19	12/05/18			3	j10	15/06/18		BOG	3	j10	24/07/18	_	RIO	2	j10	11/08/18	_		3
j20	15/05/18		BOG	4	j20	16/06/18	RIO	BOG	2	j20	24/07/18	RIO	BOG	3	j20	11/08/18		-	3
j20 j21	16/05/18			3	j20 j21	16/06/18	_	IBA	3	j20 j21	25/07/18			3	j20 j21	12/08/18			3
-	16/05/18				-					j21	25/07/18				j21	12/08/18			
j22				2	j22	16/06/18			3	-				3	-	13/08/18	_		4
j23	16/05/18			3	j23	16/06/18		RIO	1	j23	25/07/18			1	j23		_		2
j24	16/05/18			4	j24	19/06/18	CAL	BAR	3	j24	26/07/18			3	j24	13/08/18		-	3
j25	17/05/18		BOG	3	j25	19/06/18	RIO	BOG	3	j25	27/07/18	RIO	BOG	2	j25	14/08/18			3
j26	17/05/18			3	j26	21/06/18		RIO	2	j26	27/07/18			1	j26	14/08/18			4
j27	17/05/18	RIO	BOG	3	j27	28/06/18		RIO	2	j27	27/07/18		RIO	4	j27	15/08/18	RIO	CAR	3
j28	17/05/18			3	j28	29/06/18	RIO	BOG	2	j28	30/07/18	_	RIO	1	j28	15/08/18	RIO	BOG	3
j29	18/05/18			1	j29	30/06/18	BOG	CAL	3	j29	31/07/18	RIO	BOG	1	j29	16/08/18			2
j30	20/05/18			1						j30	31/07/18	BOG	CAL	3	j30	17/08/18		BOG	2
j31	21/05/18		BOG	2											j31	19/08/18			1
j32	21/05/18			3											j32	21/08/18			3
j33	22/05/18			3											j33	21/08/18			2
j34	23/05/18	RIO	CAR	3											j34	22/08/18	RIO	BOG	3
j35	23/05/18	RIO	BOG	3											j35	22/08/18	RIO	BOG	2
j36	24/05/18	RIO	BOG	3											j36	23/08/18		BOG	3
j37	25/05/18			3											j37	24/08/18	_	BOG	3
j38	25/05/18		BOG	3											j38	25/08/18		BOG	3
j39				3											j39	25/08/18			2
j40	26/05/18			3											j40	26/08/18			2
	28/05/18			1											j41	27/08/18			3
j42	30/05/18			2											j42	27/08/18			3
j43	30/05/18			3											j43	28/08/18	BOG	CAL	1
j44	30/05/18	BOG	RIO	3											j44	28/08/18	BUC	BOG	3
j45	31/05/18	BOG	RIO	1											j45	28/08/18	BOG	RIO	2
															j46	29/08/18	BOG	RIO	3
															j47	30/08/18	BOG	RIO	3
															j48	31/08/18	BOG	RIO	2

*Identificación de las ciudades por sus iniciales

BARRANQUILL	BOGOTA	SUCARAMANGA	CAJICA	CALI	CARTAGENA	CUCUTA	IBAGUE	MEDELLIN	RIONEGRO	SANTA MARTA	TUNJA
BAR	BOG	BUC	CAJ	CAL	CAR	CUC	IBA	MED	RIO	SAN	TUN

Anexos D. Listado viajes tercer cuatrimestre de 2018 con el tipo de vehículo usado.

J	Dia	Ori	Des	Veh	J	Dia	Ori	Des	Veh	J	Dia	Ori	Des	Veh	J	Dia	Ori	Des	Veh
j1	01/09/18	BOG	RIO	3	j1	01/10/18	BOG	RIO	3	j1	01/11/18	BOG	CAL	1	j1	01/12/18	BOG	RIO	3
j2	02/09/18	BOG	RIO	3	j2	01/10/18	BOG	RIO	3	j2	02/11/18	RIO	BOG	3	j2	01/12/18	BOG	RIO	3
j3	03/09/18	MED	BOG	2	j3	02/10/18	RIO	BOG	3	j3	02/11/18	BOG	RIO	2	j3	01/12/18		IBA	2
j4	03/09/18	RIO	BOG	3	j4	03/10/18	BOG	RIO	3	j4	02/11/18	BOG	RIO	3	j4	03/12/18	RIO	BOG	3
j5	05/09/18	BOG	RIO	2	j5	05/10/18	BAR	BOG	4	j5	06/11/18	MED	BOG	2	j5	03/12/18	RIO	BOG	3
j6	06/09/18	RIO	BOG	2	j6	05/10/18	BOG	RIO	3	j6	06/11/18	RIO	BOG	3	j6	04/12/18	BOG	RIO	3
j7	06/09/18	BOG	RIO	3	j7	05/10/18	BOG	RIO	3	j7	07/11/18	MED	BOG	4	j7	05/12/18	RIO	BOG	3
j8	09/09/18	BOG	RIO	2	j8	05/10/18	BOG	RIO	1	j8	08/11/18	BOG	MED	3	j8	07/12/18	BOG	RIO	2
j9	10/09/18	BOG	RIO	3	j9	08/10/18	RIO	BOG	3	j9	10/11/18	CAL	BOG	3	j9	08/12/18	RIO	CAR	3
j10	12/09/18	RIO	BOG	2	j10	08/10/18	RIO	BOG	3	j10	12/11/18	BOG	RIO	1	j10	08/12/18	RIO	BOG	3
j11	13/09/18	BOG	RIO	1	j11	09/10/18	RIO	BOG	3	j11	13/11/18	RIO	BOG	1	j11	09/12/18	CAR	BOG	3
j12	14/09/18	RIO	BOG	3	j12	09/10/18	RIO	BOG	3	j12	13/11/18	BOG	RIO	2	j12	10/12/18	MED	BOG	2
j13	14/09/18	CAL	BOG	3	j13	10/10/18	RIO	BOG	3	j13	13/11/18	BOG	RIO	3	j13	10/12/18	RIO	BOG	3
j14	15/09/18	BOG	CAR	3	j14	10/10/18	RIO	BOG	3	j14	14/11/18	BAR	MED	3	j14	11/12/18	BOG	RIO	3
j15	15/09/18	BOG	BAR	3	j15	10/10/18	RIO	CAR	3	j15	15/11/18	RIO	BOG	2	j15	12/12/18	BOG	RIO	2
j16	15/09/18	BOG	BUC	3	j16	10/10/18	BOG	RIO	3	j16	15/11/18	RIO	BOG	3	j16	12/12/18	RIO	BOG	3
j17	15/09/18	BOG	BUC	3	j17	11/10/18	RIO	BOG	3	j17	16/11/18	BOG	RIO	3	j17	12/12/18	RIO	BOG	3
j18	15/09/18	BOG	CAL	3	j18	11/10/18	CAR	BOG	3	j18	16/11/18	BOG	RIO	3	j18	13/12/18	BOG	RIO	3
j19	15/09/18	RIO	BOG	1	j19	12/10/18	MED	BOG	3	j19	16/11/18	CAL	RIO	3	j19	13/12/18	BOG	CAL	4
j20	16/09/18	BOG	RIO	1	j20	12/10/18	BOG	RIO	1	j20	16/11/18	BOG	RIO	2	j20	13/12/18	BOG	RIO	1
j21	17/09/18	RIO	BOG	1	j21	17/10/18	BOG	RIO	3	j21	17/11/18	IBA	BOG	1	j21	13/12/18	BOG	CAL	3
j22	17/09/18	BOG	RIO	3	j22	18/10/18	RIO	BOG	3	j22	19/11/18	RIO	CAL	2	j22	14/12/18	RIO	BOG	1
j23	17/09/18	BOG	RIO	3	j23	19/10/18	RIO	BOG	3	j23	20/11/18	RIO	BOG	3	j23	16/12/18	RIO	CAL	2
j24	18/09/18	BOG	RIO	3	j24	22/10/18	BAR	BOG	3	j24	20/11/18	RIO	BOG	3	j24	16/12/18	BOG	CAL	1
j25	18/09/18	RIO	BOG	3	j25	22/10/18	RIO	BOG	3	j25	21/11/18	BUC	BOG	2	j25	16/12/18	BOG	RIO	3
j26	18/09/18	BOG	RIO	2	j26	22/10/18	BOG	RIO	3	j26	21/11/18	BOG	RIO	1	j26	17/12/18	CAL	RIO	3
j27	18/09/18	BOG	RIO	3	j27	23/10/18	BOG	CAL	1	j27	23/11/18	BOG	MED	2	j27	17/12/18	CAL	RIO	2
j28	19/09/18	BOG	RIO	3	j28	23/10/18	BOG	RIO	2	j28	23/11/18	BOG	RIO	1	j28	17/12/18	CAL	RIO	1
j29	20/09/18	CUC	BOG	3	j29	23/10/18	BOG	RIO	3	j29	24/11/18	BOG	RIO	3	j29	17/12/18	BOG	RIO	3
j30	20/09/18	RIO	BOG	2	j30	24/10/18	RIO	BOG	2	j30	25/11/18	BOG	RIO	2	j30	18/12/18	BAR	BOG	4
j31	22/09/18	BOG	RIO	3	j31	24/10/18	BOG	RIO	3	j31	25/11/18	BOG	RIO	3	j31	19/12/18		RIO	1
j32	22/09/18	BOG	RIO	1	j32	24/10/18	CAR	SAN	3	j32	25/11/18	RIO	BOG	1	j32	20/12/18		RIO	3
j33	24/09/18	BOG	RIO	2	j33	26/10/18	RIO	BOG	3	j33	26/11/18	BOG	RIO	1	j33	21/12/18		RIO	3
j34	25/09/18	CAR	BOG	3	j34	27/10/18	BOG	RIO	2	j34	26/11/18	RIO	BOG	2	j34	21/12/18	BOG	RIO	2
j35	26/09/18	-	CAJ	3	j35	27/10/18	BOG	MED	1	j35	27/11/18	RIO	BOG	1	j35	21/12/18	MED	BOG	1
j36	26/09/18	BOG	RIO	3	j36	28/10/18	RIO	BOG	2	j36	27/11/18	BOG	RIO	2	j36	24/12/18	RIO	BOG	3
j37	27/09/18		RIO	3	j37	29/10/18	BOG	RIO	2	j37	28/11/18	BOG	RIO	1	j37	26/12/18	RIO	BOG	3
j38	27/09/18	MED	BOG	2	j38	29/10/18	RIO	BOG	3	j38	28/11/18	RIO	BOG	2	j38	26/12/18	BOG	RIO	2
j39	27/09/18	IBA	BOG	1	j39	29/10/18	MED	BOG	1	j39	29/11/18		BAR	2	j39	27/12/18	BOG	RIO	1
j40	28/09/18	RIO	BOG	3	j40	30/10/18	RIO	BOG	2	j40	30/11/18		RIO	3	j40	27/12/18	RIO	BOG	2
j41	28/09/18	BOG	CAL	3	j41	30/10/18	RIO	BOG	3	j41	30/11/18	BOG	RIO	1	j41	29/12/18	BOG	MED	3
j42	28/09/18		CAL	3	j42	30/10/18	RIO	BOG	3						j42	29/12/18		BOG	3
j43	30/09/18	BOG	RIO	3											j43	31/12/18	BOG	BAR	3

*Identificación de las ciudades por sus iniciales

BARRANQUILLA	BOGOTA	UCARAMANG	CAJICA	CALI	CARTAGENA	CUCUTA	IBAGUE	MEDELLIN	RIONEGRO	SANTA MARTA	TUNJA
BAR	BOG	BUC	CAJ	CAL	CAR	CUC	IBA	MED	RIO	SAN	TUN

Anexos E. Listado viajes primer cuatrimestre de 2018 con los posibles vehículos a usar.

J	Dia	1	2	3	4	J	Dia	1	2	3	4	J	Dia	1	2	3	4	J	Dia	1	2	3	4
j1	03/01/18	1	1	1	1	j1	01/02/18	1	1			j1	01/03/18		1		1	j1	02/04/18	1	1	1	1
j2	03/01/18	1	1	1	1	j2	01/02/18	1	1	1	1	j2	02/03/18	1	1	1	1	j2	02/04/18	1	1	1	1
j3	03/01/18		1		1	j3	02/02/18	1	1	1	1	j3	02/03/18	1	1	1	1	j3	03/04/18	1	1	1	1
j4	04/01/18	1	1	1	1	j4	05/02/18	1	1	1	1	j4	06/03/18	1	1	1	1	j4	03/04/18		1		1
j5	04/01/18	1	1	1	1	j5	06/02/18	1	1	1	1	j5	06/03/18		1		1	j5	03/04/18	1	1	1	1
j6	04/01/18	1	1	1	1	j6	06/02/18	1	1	1	1	j6	10/03/18	1	1	1	1	j6	03/04/18	1	1	1	1
j7	05/01/18	1	1	1	1	j7	06/02/18		1		1	j7	12/03/18	1	1	1	1	j7	03/04/18	1	1	1	1
j8	07/01/18	1	1	1	1	j8	06/02/18	1	1	1	1	j8	13/03/18	1	1	1	1	j8	04/04/18	1	1	1	1
j9	10/01/18		1		1	j9	08/02/18	1	1	1	1	j9	14/03/18		1		1	j9	05/04/18	1	1	1	1
j10	10/01/18	1	1	1	1	j10	09/02/18		1		1	j10	15/03/18	1	1	1	1	j10	06/04/18		1		1
j11	12/01/18		1		1	j11	10/02/18	1	1	1	1	j11	15/03/18	1	1	1	1	j11	07/04/18	1	1	1	1
j12	12/01/18	1	1			j12	13/02/18		1		1	j12	20/03/18	1	1	1	1	j12	07/04/18		1		1
j13	13/01/18		1		1	j13	14/02/18	1	1	1	1	j13	21/03/18	1	1	1	1	j13	09/04/18	1	1	1	1
j14	15/01/18	1	1	1	1	j14	14/02/18		1		1	j14	23/03/18	1	1	1	1	j14	10/04/18	1	1		
j15	16/01/18	1	1	1	1	j15	16/02/18	1	1	1	1	j15	21/03/18	1	1	1	1	j15	10/04/18		1		1
j16	16/01/18	1	1	1	1	j16	18/02/18	1	1	1	1	j16	22/03/18	1	1	1	1	j16	11/04/18	1	1	1	1
j17	17/01/18	1	1	1	1	j17	18/02/18	1	1	1	1	j17	22/03/18	1	1	1	1	j17	12/04/18	1	1	1	1
j18	18/01/18	1	1	1	1	j18	20/02/18		1		1	j18	23/03/18	1	1			j18	12/04/18	1	1	1	1
j19	19/01/18	1	1	1	1	j19	20/02/18	1	1	1	1	j19	23/03/18	1	1	1	1	j19	13/04/18	1	1	1	1
j20	23/01/18		1		1	j20	21/02/18	1	1	1	1	j20	24/03/18		1		1	j20	14/04/18	1	1	1	1
j21	24/01/18	1	1	1	1	j21	22/02/18	1	1	1	1	j21	24/03/18	1	1	1	1	j21	14/04/18	1	1	1	1
j22	27/01/18		1		1	j22	23/02/18	1	1	1	1	j22	24/03/18		1		1	j22	18/04/18	1	1	1	1
j23	27/01/18	1	1	1	1	j23	26/02/18		1		1	j23	26/03/18	1	1	1	1	j23	18/04/18	1	1	1	1
j24	28/01/18	1	1	1	1							j24	26/03/18	1	1	1	1	j24	19/04/18	1	1	1	1
j25	29/01/18	1	1	1	1							j25	26/03/18	1	1	1	1	j25	19/04/18	1	1	1	1
j26	29/01/18	1	1	1	1							j26	27/03/18	1	1	1	1	j26	20/04/18		1		1
j27	29/01/18	1	1	1	1							j27	27/03/18		1		1	j27	21/04/18	1	1	1	1
j28	30/01/18	1	1	1	1							j28	28/03/18		1		1	j28	23/04/18	1	1	1	1
j29	30/01/18	1	1	1	1							j29	31/03/18	1	1	1	1	j29	25/04/18		1		1
j30	30/01/18	1	1	1	1							j30	31/03/18	1	1			j30	25/04/18		1		1
												j31	31/03/18		1		1	j31	26/04/18	1	1	1	1
												j32	31/03/18	1	1	1	1	j32	27/04/18		1		1
																		j33	27/04/18		1		1
																		j34	28/04/18		1		1
																		j35	30/04/18	1	1	1	1

Anexos F. Listado viajes segundo cuatrimestre de 2018 con los posibles vehículos a usar.

J	Dia	1	2	3	4	J	Dia	1	2	3	4	J	Dia	1	2	3	4	J	Dia	1	2	3	1
j1	01/05/18		1			j1	01/06/18	1		,	7	j1	04/07/18			1		j1	01/08/18			1	
j2	02/05/18	-				j2	01/06/18			1	1	j2	05/07/18		1	1		j2	02/08/18		-		-
j3	03/05/18	-				j3	02/06/18					j3	05/07/18		-	1	_	j3	02/08/18		-		Н
j4	03/05/18	-				j4	05/06/18	-	-			j4	06/07/18	-	-	1	_	j4	02/08/18		-		
j5	03/05/18	-				j5	05/06/18		-			j5	06/07/18	-	-	-	_	j5	02/08/18	_	1	-	1
j6	04/05/18	-				j6	06/06/18		-	Ė	_	j6	07/07/18	-	-	Ė	_	j6	02/08/18	1	-	1	Н
j7	04/05/18	_				j7	06/06/18			1	1	j7	09/07/18			1	1	j7	03/08/18				
j8	04/05/18	_	-	-	-	j8	07/06/18					j8		1	-	Ē	Ī	j8	05/08/18		_	F	Ī
j9	04/05/18	Ē	1	Ē	1	j9	07/06/18					j9	13/07/18		_	1	1	j9	05/08/18		-	1	1
j10	04/05/18	1		1		j10	07/06/18					j10	14/07/18	_	-	-	_	j10	06/08/18				-
j11	04/05/18	-				j11	08/06/18					j11	14/07/18		-			j11	06/08/18				Н
j12	05/05/18		1		1	j12	08/06/18		1		1	j12	18/07/18			1	1	j12	08/08/18				Н
j13	05/05/18	1	1	1	1	j13	08/06/18		1		1	j13	18/07/18		1		1	j13	09/08/18				П
j14	08/05/18				1	j14	08/06/18	1	1			j14	18/07/18	1	1	Г		j14	09/08/18		1		1
j15	09/05/18				1	j15	13/06/18		1		1	j15	18/07/18			Г		j15	10/08/18	1	1	1	1
j16	10/05/18	1	1	1	1	j16	13/06/18	1	1	1	1	j16	19/07/18	1	1	1	1	j16	10/08/18			1	1
j17	11/05/18	1	1	1	1	j17	13/06/18	1		1		j17	22/07/18	1	1	1	1	j17	11/08/18	1	1	1	1
j18	11/05/18	1	1	1	1	j18	15/06/18	1	1			j18	23/07/18	1	1	1	1	j18	11/08/18	1	1		П
j19	12/05/18	1	1	1	1	j19	15/06/18	1	1	1	1	j19	24/07/18	1	1	1	1	j19	11/08/18	1	1	1	1
j20	15/05/18		1		1	j20	16/06/18	1	1	1	1	j20	24/07/18	1	1	1	1	j20	11/08/18	1	1	1	1
j21	16/05/18	1	1	1	1	j21	16/06/18	1		1		j21	25/07/18	1	1	1	1	j21	12/08/18	1	1	1	1
j22	16/05/18	1	1	1	1	j22	16/06/18	1		1		j22	25/07/18	1	1	1	1	j22	12/08/18		1		1
j23	16/05/18	1	1	1	1	j23	16/06/18	1	1			j23	25/07/18	1	1	1	1	j23	13/08/18		1		1
j24	16/05/18		1		1	j24	19/06/18	1	1	1	1	j24	26/07/18	1	1	1	1	j24	13/08/18	1	1	1	1
j25	17/05/18	1	1	1	1	j25	19/06/18	1	1	1	1	j25	27/07/18	1	1	1	1	j25	14/08/18	1	1	1	1
j26	17/05/18	1	1	1	1	j26	21/06/18	1	1			j26	27/07/18	1	1			j26	14/08/18		1		1
j27	17/05/18	1	1	1	1	j27	28/06/18	1	1	1	1	j27	27/07/18	1	1	1	1	j27	15/08/18	1	1	1	1
j28	17/05/18		1			j28	29/06/18					j28	30/07/18	1	-			j28	15/08/18	1	1	1	1
j29	18/05/18					j29	30/06/18	1	1	1	1	j29	31/07/18		1	1		j29	16/08/18		1	Ш	1
j30	20/05/18	1		1								j30	31/07/18	1	1	1	1	j30	17/08/18		_		Ш
j31	21/05/18	L	1		1										L	L		j31	19/08/18		-	1	Н
j32	21/05/18	_	1												L	L		j32	21/08/18		1		Н
j33	22/05/18			1											L	L		j33	21/08/18		1		Н
j34	23/05/18	-			1											L		j34	22/08/18		1		-
j35	23/05/18	_	-	-	-			L		L					L	L		j35	22/08/18				-
j36	24/05/18									H					L	L		j36	23/08/18				
j37	25/05/18									H					L	L		j37	24/08/18		_		-
j38	25/05/18							L		H					-	L		j38	25/08/18	1		1	
j39	25/05/18	-		_						H				_	-	_		j39	25/08/18	_	1		1
j40	26/05/18							H	H	H				H	H	H		j40	26/08/18				
j41	28/05/18	-		1	1				-	H				_	H	H	_	j41	27/08/18				
j42	30/05/18	_	_	1	1				H	H				-	H	H	_	j42	27/08/18		_		-
j43	30/05/18								H	H				H	H	H		j43	28/08/18				
j44	30/05/18 31/05/18	-	_	_					-	H							_	j44	28/08/18				-
j45	31/03/18	1	1	1	1			H	H	H				-	H	H		j45 j46	28/08/18 29/08/18				
			H	H	H					H								j46 j47	30/08/18				
			H	H	H			H	H	H				H		H		j47 j48	31/08/18	Т	1		1
																		140	21/00/10		1		1

Anexos G. Listado viajes tercer cuatrimestre de 2018 con los posibles vehículos a usar.

																						_	_
J	Dia	1	2	3	4	J	Dia	1	2	3	4	J	Dia	1	2	3	4	J	Dia	1	2	3	4
j1	01/09/18	1	1	1	1	j1	01/10/18	1	1	1	1	j1	01/11/18	1	1			j1	01/12/18	1	1	1	1
j2	02/09/18	1	1	1	1	j2	01/10/18	1	1	1	1	j2	02/11/18	1	1	1	1	j2	01/12/18	1	1	1	1
j3	03/09/18		1		1	j3	02/10/18	1	1	1	1	j3	02/11/18	1	1	1	1	j3	01/12/18		1		1
j4	03/09/18	1	1	1	1	j4	03/10/18	1	1	1	1	j4	02/11/18	1	1	1	1	j4	03/12/18	1	1	1	1
j5	05/09/18	1	1	1	1	j5	05/10/18		1		1	j5	06/11/18		1		1	j5	03/12/18	1	1	1	1
j6	06/09/18	1	1			j6	05/10/18	1	1	1	1	j6	06/11/18	1	1	1	1	j6	04/12/18	1	1	1	1
j7	06/09/18	1	1	1	1	j7	05/10/18	1	1	1	1	j7	07/11/18	1	1	1	1	j7	05/12/18	1	1	1	1
j8	09/09/18	1	1	1	1	j8	05/10/18	1	1	1	1	j8	08/11/18	1	1	1	1	j8	07/12/18	1	1	1	1
j9	10/09/18	1	1	1	1	j9	08/10/18	1	1	1	1	j9	10/11/18	1	1	1	1	j9	08/12/18	1	1	1	1
j10	12/09/18	1	1	1	1	j10	08/10/18	1	1	1	1	j10	12/11/18	1	1	1	1	j10	08/12/18	1	1	1	1
j11	13/09/18	1	1			j11	09/10/18	1	1	1	1	j11	13/11/18	1	1	1	1	j11	09/12/18	1	1	1	1
j12	14/09/18	1	1	1	1	j12	09/10/18	1	1	1	1	j12	13/11/18	1	1	1	1	j12	10/12/18		1		1
j13	14/09/18	1	1	1	1	j13	10/10/18	1	1	1	1	j13	13/11/18	1	1	1	1	j13	10/12/18	1	1	1	1
j14	15/09/18	1	1	1	1	j14	10/10/18	1	1	1	1	j14	14/11/18	1	1	1	1	j14	11/12/18	1	1	1	1
j15	15/09/18	1	1	1	1	j15	10/10/18	1	1	1	1	j15	15/11/18	1	1			j15	12/12/18	1	1	1	1
j16	15/09/18	1	1	1	1	j16	10/10/18	1	1	1	1	j16	15/11/18	1	1	1	1	j16	12/12/18	1	1	1	1
j17	15/09/18	1	1	1	1	j17	11/10/18	1	1	1	1	j17	16/11/18	1	1	1	1	j17	12/12/18	1	1	1	1
j18	15/09/18	1	1	1	1	j18	11/10/18	1	1	1	1	j18	16/11/18	1	1	1	1	j18	13/12/18	1	1	1	1
j19	15/09/18	1	1	1	1	j19	12/10/18	1	1	1	1	j19	16/11/18	1	1	1	1	j19	13/12/18		1		1
j20	16/09/18	1	1	1	1	j20	12/10/18	1	1			j20	16/11/18		1		1	j20	13/12/18	1	1	1	1
j21	17/09/18	1	1	1	1	j21	17/10/18	1	1	1	1	j21	17/11/18	1	1	1	1	j21	13/12/18	1	1	1	1
j22	17/09/18	1	1	1	1	j22	18/10/18	1	1	1	1	j22	19/11/18		1		1	j22	14/12/18	1	1	Ш	
j23	17/09/18	1	1	1	1	j23	19/10/18	1	1	1	1	j23	20/11/18	1	1	1	1	j23	16/12/18	1	1	Ш	
j24	18/09/18	1	1	1	1	j24	22/10/18		1		1	j24	20/11/18	1	1	1	1	j24	16/12/18	1	1	1	1
j25	18/09/18	1	1	1	1	j25	22/10/18	1	1	1	1	j25	21/11/18		1		1	j25	16/12/18	1	1	1	1
j26	18/09/18	1	1	1	1	j26	22/10/18	1	1	1	1	j26	21/11/18	1	1			j26	17/12/18	1	1	1	1
j27	18/09/18	1	1	1	1	j27	23/10/18	1	1	1	1	j27	23/11/18		1		1	j27	17/12/18		1	Ш	1
j28	19/09/18	1	1	1	1	j28	23/10/18		1		1	j28	23/11/18	1	1			j28	17/12/18	1	1	1	1
j29	20/09/18	1	1	1	1	j29	23/10/18	1	1	1	1	j29	24/11/18	1	1	1	1	j29	17/12/18	1	1	1	1
j30	20/09/18	1	1	1	1	j30	24/10/18		1		1	j30	25/11/18	1	1	1	1	j30	18/12/18	1	1	1	1
j31	22/09/18	1	1	1	1	j31	24/10/18	1	1	1	1	j31	25/11/18	1	1	1	1	j31	19/12/18	1	1		
j32	22/09/18	1	1			j32	24/10/18	1	1	1	1	j32	25/11/18	1	1	1	1	j32	20/12/18	1	1	1	1
j33	24/09/18	1	1	1	1	j33	26/10/18	1	1	1	1	j33	26/11/18	1	1	1	1	j33	21/12/18			1	
j34	25/09/18		-	-	-	j34	27/10/18						26/11/18					j34	21/12/18				
j35	26/09/18	1	1	1	1	j35	27/10/18	1	1	1	1	j35	27/11/18	1	1	1	1	j35	21/12/18	1	1	1	1
j36	26/09/18	1	1	1	1	j36	28/10/18	1	1	1	1	j36	27/11/18		1		1	j36	24/12/18	1	1	1	1
j37	27/09/18		_		_	j37	29/10/18		1		1	j37	28/11/18	1	1	1	1	j37	26/12/18	1	1	1	1
j38	27/09/18	1	1	1	1	j38	29/10/18	1	1	1	1	j38	28/11/18	1	1	1	1	j38	26/12/18		1		1
j39	27/09/18	1	1	1	1	j39	29/10/18						29/11/18		1		1	j39	27/12/18			1	1
j40	28/09/18		-	-	-	j40	30/10/18	1	1	1	1	j40	30/11/18	1	1	1	1	j40	27/12/18				Ш
j41	28/09/18		_		_	j41	30/10/18	_				j41	30/11/18	1	1			j41	29/12/18				-
j42	28/09/18			-	-	j42	30/10/18	1	1	1	1							j42	29/12/18				
j43	30/09/18	1	1	1	1													j43	31/12/18	1	1	1	1

Anexos H. Resultado GAMS escenario 1 y 2 mes de enero de 2018.

---- 229 VARIABLE Z.L

	j1	j2	j3	j4	j5	j 6
i1	1.000					1.000
i2 i3		1.000		1.000	1.000	
i4			1.000			
+	j7	j8	j 9	j10	j11	j12
i1				1.000		2.000
i2 i3		1.000			1.000	
i4	1.000		1.000			
+	j13	j14	j15	j1 6	j17	j18
i1		1.000				1.000
i3 i4	1.000		1.000	1.000	1.000	
+	j19	j20	j21	j22	j23	j24
i1		,	1.000		1.000	
i3	1.000	1 000	1.000	1 000	1.000	1.000
i 4		1.000		1.000		
+	j25	j26	j27	j28	j29	j30
i1 i2		1.000		1.000	1.000	
i3 i4	1.000		1.000			1.000
14			1.000			1.000
	229 VARIAE	BLE COSTO.L	=	2.82215	5E+7	
			0.024 SECONDS	3 MB	27.3.0 r58c	491d LEX-LEG
	j1	j2	j 3	j4	j5	j6
i1 i2	1.000				1.000	1.000
i3 i4		1.000	1.000	1.000		
	±7	20		-10	±11	-112
+	j 7	j8	j 9	j10	j11	j12
i1 i3		1.000		1.000		2.000
i4	1.000		1.000		1.000	
+	j13	j14	j1 5	j1 6	j17	j18
i1 i3		1.000		1.000	1.000	1.000
i4	1.000		1.000	1.000	1.000	
+	j19					
	Jis	j20	j21	j22	j23	j24
i1	JIS	j20	j21 1.000	j22	j23	j24
i1 i3 i4	1.000	j20 1.000	1.000	j22 1.000	1.000	
i3 i4	1.000	1.000	1.000	1.000	1.000	1.000
i3 i4 +			1.000 j27	1.000 j28		
i3 i4 + i1 i2	1.000 j25	1.000	1.000	1.000 j28	1.000	1.000
i3 i4 + i1	1.000	1.000 j26	1.000 j27	1.000 j28	1.000	1.000 j30
i3 i4 + i1 i2 i3	1.000 j25	1.000 j26	1.000 j27	1.000 j28	1.000 j29	1.000 j30
i3 i4 + i1 i2 i3 i4	1.000 j25	1.000 j26 1.000	1.000 j27 1.000	1.000 j28	1.000 j29 1.000	1.000 j30
i3 i4 + i1 i2 i3 i4	1.000 j25 1.000	1.000 j26 1.000	1.000 j27 1.000	1.000 j28 1.000	1.000 j29 1.000	1.000 j30 1.000

Anexos I. Resultado GAMS escenario 1 y 2 mes de febrero de 2018.

	203 VARIAE	BLE Z.L				
	j1	j2	ј3	j4	j5	j 6
i1	2.000	1.000			1.000	
i2			1.000			
i3				1.000		1.000
+	j7	j8	j 9	j10	j11	j12
i1			1.000		2.000	
i2		10.000		1.000		121.22223
i4	1.000	1.000				1.000
+	j13	j14	j15	j16	j17	j18
i1			1.000		1.000	
i2 i3	1.000	1.000		1.000		1.000
	2.000					
+	j19	j20	j21	j22	j23	
i1	1.000	1.000		1.000		
i2					1.000	
i 3			1.000			
	203 VARIAE	BLE COSTO.L		= 1.85468	0E+7	
EXECUT	ION TIME	=	0.012 SECONI	DS 3 MB	27.3.0 r58	c491d LEX-LEG
	203 VARIAB	BLE Z.L				
	j1	j2	j 3	j4	j5	j 6
i1	2.000	1.000			1.000	
i 3			1.000	1.000		1.000
+	j7	j8	j 9	j10	j11	j12
i1			1.000			
i3		21022		1 222	1.000	
i 4	1.000	1.000		1.000		1.000
+	j13	j14	j15	j16	j17	j18
i2		1.000				1.000
i3	1.000		1.000	1.000	1.000	
+	j19	j20	j21	j22	j23	
i1	1.000	1.000				
i2 i3			1.000	1.000	1.000	
			1.000	2.500		
	203 VARIAB	BLE COSTO.L		= 2.04266	5E+7	
	ION TIME	=	0.012 SECONE	2 115	27 2 0 . 50	

Anexos J. Resultado GAMS escenario 1 y 2 mes de marzo de 2018.

---- 242 VARIABLE Z.L

	242 VARIAB					
	j1	j2	j 3	j4	j5	j6
i1						1.000
i2	1.000				1.000	1.000
i3		1.000	1.000	1.000		
+	j 7	j8	j9	j10	j11	j12
i1		1.000			1.000	
13	1.000	1.000		1.000	1.000	1.000
i 4			1.000			
+	j13	j14	j15	j16	j17	j18
i1		1.000	1.000			2.000
i2		1.000	1.000	1.000		2.000
13	1.000				1.000	
+	j19	j20	j21	j22	j23	j24
i1	1.000				1.000	1.000
i2				1.000		
i3 i4		1.000	1.000			
	105					120
+	j25	j 26	j27	j28	j29	j30
i1	1.000			1 000		2.000
i2 i3	1.000	1.000		1.000	1.000	
i 4			1.000			
+	j31	j32				
i1		1.000				
i2	1.000	1.000				
	242 VARIAB	LE COSTO.L		= 3.04957	3E+7	
EXECU	TION TIME	=	0.025 SECOND	DS 3 MB	27.3.0 r58	c491d LEX-LEG
	242 VARIABLE	Z.L				
	71	12	13	14	15	i 6
	j1	j2	j3	j4	j5	j6
i2 i3	1.000	j2 1.000		j4 1.000	j5 1.000	j6 1.000
i3	1.000	1.000	1.000	1,000	1.000	1.000
i3 +		1.000 j8			1.000 j11	
i3 + i1	1.000 j7	1.000	1.000	1.000 j10	1.000	1.000
i3 +	1.000	1.000 j8	1.000	1,000	1.000 j11	1.000
i3 + i1 i3 i4	1.000 j7 1.000	1.000 j8 1.000	1.000 j9 1.000	1.000 j10 1.000	1.000 j11 1.000	1.000 j12 1.000
i3 + i1 i3 i4 +	1.000 j7	1.000 j8 1.000	1.000 j9	1.000 j10 1.000 j16	1.000 j11	1.000 j12 1.000 j18
i3 + i1 i3 i4	1.000 j7 1.000	1.000 j8 1.000	1.000 j9 1.000	1.000 j10 1.000	1.000 j11 1.000	1.000 j12 1.000
i3 + i1 i3 i4 +	1.000 j7 1.000	1.000 j8 1.000	1.000 j9 1.000	1.000 j10 1.000 j16	1.000 j11 1.000 j17	1.000 j12 1.000 j18
i3 + i1 i3 i4 + i1 i2	1.000 j7 1.000 j13	1.000 j8 1.000	1.000 j9 1.000 j15	1.000 j10 1.000 j16	1.000 j11 1.000 j17	1.000 j12 1.000 j18
i3	1.000 j7 1.000 j13	1.000 j8 1.000 j14 1.000	1.000 j9 1.000 j15	1.000 j10 1.000 j16 1.000	1.000 j11 1.000 j17 1.000	1.000 j12 1.000 j18 2.000
i3	1.000 j7 1.000 j13	1.000 j8 1.000 j14 1.000	1.000 j9 1.000 j15	1.000 j10 1.000 j16 1.000	1.000 j11 1.000 j17 1.000	1.000 j12 1.000 j18 2.000
i3	1.000 j7 1.000 j13 1.000 j19	1.000 j8 1.000 j14 1.000	1.000 j9 1.000 j15 1.000 j21	1.000 j10 1.000 j16 1.000	1.000 j11 1.000 j17 1.000	1.000 j12 1.000 j18 2.000
i3	1.000 j7 1.000 j13 1.000 j19	1.000 j8 1.000 j14 1.000	1.000 j9 1.000 j15 1.000 j21	1.000 j10 1.000 j16 1.000	1.000 j11 1.000 j17 1.000	1.000 j12 1.000 j18 2.000
i3	1.000 j7 1.000 j13 1.000 j19	1.000 j8 1.000 j14 1.000 j20	1.000 j9 1.000 j15 1.000 j21 1.000	1.000 j10 1.000 j16 1.000 j22	1.000 j11 1.000 j17 1.000 j23 1.000	1.000 j12 1.000 j18 2.000 j24 1.000
i3 + i1 i3 i4 + i1 i2 i3 + i1 i2 i3 + i1 i3 i4 + i1 i3 i4 + i1 i3 i4	1.000 j7 1.000 j13 1.000 j19	1.000 j8 1.000 j14 1.000 j20 1.000 j26	1.000 j9 1.000 j15 1.000 j21 1.000	1.000 j10 1.000 j16 1.000 j22	1.000 j11 1.000 j17 1.000 j23 1.000	1.000 j12 1.000 j18 2.000 j24 1.000
i3	1.000 j7 1.000 j13 1.000 j19 1.000	1.000 j8 1.000 j14 1.000 j20	1.000 j9 1.000 j15 1.000 j21 1.000	1.000 j10 1.000 j16 1.000 j22 1.000 j28	1.000 j11 1.000 j17 1.000 j23 1.000	1.000 j12 1.000 j18 2.000 j24 1.000
i3 + i1 i3 i4 + i1 i2 i3 + i1 i2 i3 i4 + i1 i2 i3 i4 + i1 i3 i4	1.000 j7 1.000 j13 1.000 j19 1.000 j25	1.000 j8 1.000 j14 1.000 j20 1.000 j26	1.000 j9 1.000 j15 1.000 j21 1.000	1.000 j10 1.000 j16 1.000 j22 1.000 j28	1.000 j11 1.000 j17 1.000 j23 1.000	1.000 j12 1.000 j18 2.000 j24 1.000
i3 + i1 i3 i4 + i1 i2 i3 + i1 i2 i3 + i1 i3 i4 + i1 i2 i3 i4 + + i1 i2 i3 i4 +	1.000 j7 1.000 j13 1.000 j19 1.000	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32	1.000 j9 1.000 j15 1.000 j21 1.000	1.000 j10 1.000 j16 1.000 j22 1.000 j28	1.000 j11 1.000 j17 1.000 j23 1.000	1.000 j12 1.000 j18 2.000 j24 1.000
i3 + i1 i3 i4 + i1 i2 i3 + i1 i2 i3 i4 + i1 i3 i4 + i1 i3 i4 + i1 i2 i3 i4	1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000	1.000 j8 1.000 j14 1.000 j20 1.000 j26	1.000 j9 1.000 j15 1.000 j21 1.000	1.000 j10 1.000 j16 1.000 j22 1.000 j28	1.000 j11 1.000 j17 1.000 j23 1.000	1.000 j12 1.000 j18 2.000 j24 1.000
i3 + i1 i3 i4 + i1 i2 i3 + i1 i2 i3 + i1 i3 i4 + i1 i2 i3 i4 + + i1 i2 i3 i4 +	1.000 j7 1.000 j13 1.000 j19 1.000 j25	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32	1.000 j9 1.000 j15 1.000 j21 1.000	1.000 j10 1.000 j16 1.000 j22 1.000 j28	1.000 j11 1.000 j17 1.000 j23 1.000	1.000 j12 1.000 j18 2.000 j24 1.000
i3 + i1 i3 i4 + i1 i2 i3 + i1 i2 i3 i4 + i1 i3 i4 + i1 i2 i3 i4 + i1 i2 i3 i4	1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000	1.000 j9 1.000 j15 1.000 j21 1.000 j27	1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000	1.000 j11 1.000 j17 1.000 j23 1.000 j29	1.000 j12 1.000 j18 2.000 j24 1.000
i3 + i1 i3 i4 + i1 i2 i3 + i1 i2 i3 i4 + i1 i3 i4 + i1 i2 i3 i4 + i1 i2 i3 i4	1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000	1.000 j9 1.000 j15 1.000 j21 1.000 j27	1.000 j10 1.000 j16 1.000 j22 1.000 j28	1.000 j11 1.000 j17 1.000 j23 1.000 j29	1.000 j12 1.000 j18 2.000 j24 1.000
i3 + i1 i3 i4 + i1 i2 i3 + i1 i2 i3 i4 + i1 i3 i4 + i1 i2 i3 i4 + i1 i2 i3 i4	1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000	1.000 j9 1.000 j15 1.000 j21 1.000 j27	1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000	1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000	1.000 j12 1.000 j18 2.000 j24 1.000

Anexos K. Resultado GAMS escenario 1 y 2 mes de abril de 2018.

---- 256 VARIABLE Z.L

	j1	j2	j3	j4	j5	j 6
i1	1.000				1.000	
i3	1.000	1.000			1.000	1.000
i 4			1.000	1.000		
+	j7	j8	j 9	j10	j11	j12
i1		1.000	1.000		1.000	
i2	1.000	21000	21000	1.000	11000	
i 4						1.000
+	j13	j14	j15	j16	j17	j18
i1	1.000	2.000		1.000		
i3						1.000
i4			1.000		1.000	
+	j1 9	j20	j21	j22	j 23	j24
i1			1.000		1.000	1.000
i 3	1.000	1.000		1.000		
+	j25	j26	j27	j28	j 29	j30
i1	_	-	-			
i2				2.000	1.000	
i3 i4	1.000	1.000	1.000			1.000
14						1.000
+	j31	j32	j33	j34	j35	
i1					1.000	
i2 i3	1.000			1.000		
i4	1.000	1.000	1.000			
	256 VARIAB	LE COSTO.L		= 3.06250	0E+7	
EXEC	CUTION TIME	=	0.017 SECON	DS 3 MB	27.3.0 r58	Bc491d LEX-LEG
	256 VARIAB	LE Z.L				
	j1	j2	j 3	j4	j 5	j6
i1	1.000					
i3					1.000	
i 4		1.000	4 000	4 000	1.000	1.000
		1.000	1.000	1.000	1.000	1.000
+	j7	1.000 j8	1.000 j9	1.000 j10	1.000 j11	1.000 j12
i1	j7		j9			
i1 i2		j8			j11	
i1	j7	j8	j9			
i1 i2 i3 i4	j7 1.000	j8	j9 1.000	j10 1.000	j11	j12
i1 i2 i3 i4	j7 1.000 j13	j8 1.000 j14	j9	j10 1.000 j16	j11	j12
i1 i2 i3 i4	j7 1.000	j8 1.000	j9 1.000	j10 1.000	j11	j12
i1 i2 i3 i4 +	j7 1.000 j13	j8 1.000 j14	j9 1.000	j10 1.000 j16	j11 1.000 j17	j12
i1 i2 i3 i4 +	j7 1.000 j13	j8 1.000 j14	j9 1.000 j15	j10 1.000 j16	j11 1.000 j17	j12 1.000 j18
i1 i2 i3 i4 + i1 i3 i4	j7 1.000 j13 1.000	j8 1.000 j14 2.000	j9 1.000 j15	1.000 j16 1.000	j11 1.000 j17 1.000 j23	j12 1.000 j18 1.000 j24
i1 i2 i3 i4 + i1 i3 i4 + i1 i3 i4	j7 1.000 j13 1.000	j8 1.000 j14 2.000	j9 1.000 j15 1.000 j21	1.000 j16 1.000	j11 1.000 j17 1.000	j12 1.000 j18
i1 i2 i3 i4 + i1 i3 i4 +	j7 1.000 j13 1.000	j8 1.000 j14 2.000	j9 1.000 j15	1.000 j16 1.000	j11 1.000 j17 1.000 j23	j12 1.000 j18 1.000 j24
i1 i2 i3 i4 + i1 i3 i4 + i1 i3 i4	j7 1.000 j13 1.000	j8 1.000 j14 2.000	j9 1.000 j15 1.000 j21	1.000 j16 1.000	j11 1.000 j17 1.000 j23	j12 1.000 j18 1.000 j24
i1 i2 i3 i4 + i1 i3 i4 + i1 i3 i4 + i1 i3 i4	j7 1.000 j13 1.000 j19 1.000	j8 1.000 j14 2.000 j20 1.000	j9 1.000 j15 1.000 j21 1.000	1.000 j16 1.000 j22	j11 1.000 j17 1.000 j23 1.000	j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i3 i4 + i1 i3 i4 + i1 i3 i4	j7 1.000 j13 1.000 j19 1.000 j25	j8 1.000 j14 2.000 j20 1.000	j9 1.000 j15 1.000 j21 1.000 j27	1.000 j16 1.000 j22 1.000	j11 1.000 j17 1.000 j23 1.000	j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i3 i4 + i1 i3 i4 + i1 i3 i4	j7 1.000 j13 1.000 j19 1.000	j8 1.000 j14 2.000 j20 1.000	j9 1.000 j15 1.000 j21 1.000	1.000 j16 1.000 j22 1.000	j11 1.000 j17 1.000 j23 1.000	j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i3 i4 + i1 i3 i4 + i1 i3 i4	j7 1.000 j13 1.000 j19 1.000 j25	j8 1.000 j14 2.000 j20 1.000 j26	j9 1.000 j15 1.000 j21 1.000 j27	1.000 j16 1.000 j22 1.000 j28 2.000	j11 1.000 j17 1.000 j23 1.000	j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i3 i4 + i1 i2 i3 i4 + + i1 i2 i3 i4 + +	j7 1.000 j13 1.000 j19 1.000 j25	j8 1.000 j14 2.000 j20 1.000 j26	j9 1.000 j15 1.000 j21 1.000 j27	1.000 j16 1.000 j22 1.000	j11 1.000 j17 1.000 j23 1.000 j29 1.000	j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i3 i4 + i1 i2 i3 i4 + i1 i2	j7 1.000 j13 1.000 j19 1.000 j25	j8 1.000 j14 2.000 j20 1.000 j26	j9 1.000 j15 1.000 j21 1.000 j27	1.000 j16 1.000 j22 1.000 j28 2.000	j11 1.000 j17 1.000 j23 1.000	j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i3 i4 + i1 i2 i3 i4 + i1 i2 i3 i4	j7 1.000 j13 1.000 j19 1.000 j25	j8 1.000 j14 2.000 j20 1.000 j26	j9 1.000 j15 1.000 j21 1.000 j27 1.000	1.000 j16 1.000 j22 1.000 j28 2.000	j11 1.000 j17 1.000 j23 1.000 j29 1.000	j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i3 i4 + i1 i2 i3 i4 + i1 i2	j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31	j8 1.000 j14 2.000 j20 1.000 j26	j9 1.000 j15 1.000 j21 1.000 j27 1.000	1.000 j16 1.000 j22 1.000 j28 2.000	j11 1.000 j17 1.000 j23 1.000 j29 1.000	j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i3 i4 + i1 i2 i3 i4 + i1 i2 i3 i4	j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31	j8 1.000 j14 2.000 j20 1.000 j26 1.000 j32 2.000	j9 1.000 j15 1.000 j21 1.000 j27 1.000	1.000 j16 1.000 j22 1.000 j28 2.000	j11 1.000 j17 1.000 j23 1.000 j29 1.000	j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i3 i4 + i1 i2 i3 i4 i4	j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31	j8 1.000 j14 2.000 j20 1.000 j26 1.000 j32 2.000	j9 1.000 j15 1.000 j21 1.000 j27 1.000	1.000 j16 1.000 j22 1.000 j28 2.000	j11 1.000 j17 1.000 j23 1.000 j29 1.000	j12 1.000 j18 1.000 j24 1.000
i11 i2 i3 i4 + i11 i3 i4 + i11 i2 i3 i4 i4 i4 i1 i2 i3 i3 i4 i4 i1 i1 i1 i2 i3 i3 i4 i4 i1 i1 i1 i2 i3 i3 i4 i4 i1	j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000	j8 1.000 j14 2.000 j20 1.000 j26 1.000 j32 2.000	j9 1.000 j15 1.000 j21 1.000 j27 1.000	1.000 j16 1.000 j22 1.000 j28 2.000 j34 1.000 = 3.26183	j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000	j12 1.000 j18 1.000 j24 1.000

Anexos L. Resultado GAMS escenario 1 y 2 mes de mayo de 2018.

---- 289 VARIABLE Z.L

	j1	j2	j 3	j4	j 5	j6
i1 i2				1.000	1.000	
13	1.000	1.000	1.000			1.000
+	j7	j8	j 9	j10	j11	j12
i1	1.000					
i2 i3				1.000		1.000
14		1.000	1.000		1.000	
+	j13	j14	j15	j16	j17	j18
i1	1.000	1.000		1.000	1.000	
i2 i3			1.000			1.000
+	j19	j20	j21	j22	j23	j24
i1		,20		Jan	123	,,,,
i2	1.000		1.000	1.000		
i3 i4		1.000			1.000	1.000
+	j25	j26	j27	j28	j29	j30
i1	,	1.000	,	,	1.000	1.000
i3	1.000	1.000	1.000	1.000	1.000	1.000
+	j31	j32	j33	j34	j35	j36
i1			1.000			
i2		1.000		1 000	1 000	1 000
i3 i4	1.000			1.000	1.000	1.000
+	j37	j38	j39	j40	j41	j42
i1	5.50%		1.000	-	1.000	
i2	4 000	1 000	2.000	4 000		1.000
13	1.000	1.000		1.000		
+	j43	j44	j45			
i1 i3	1.000	1.000	1.000			
	289 VARIA	BLE COSTO.L		= 4.03785	3E+7	
	TION TIME		0.023 SECOND	DS 4 MB	27.3.0 r58	c491d LEX-LEG
EXECUT	289 VARIA	BLE Z.L				
			0.023 SECOND	os 4 MB	27.3.0 r58	j6
i1	289 VARIA	BLE Z.L		j 4		
	289 VARIA	BLE Z.L	j3		j5	
i1 i2	289 VARIA	j2	j3	j 4	j5	j6
i1 i2 i3 +	289 VARIAN j1 1.000 j7	j2 1.000 j8	j3 2.000 j9	j4 1.000	j5 1.000	j6 1.000 j12
i1 i2 i3 + i3 i4	289 VARIAN j1 1.000 j7 1.000	1.000 j8	j3 2.000 j9 1.000	j4 1.000 j10 1.000	j5 1.000 j11 1.000	j6 1.000 j12 1.000
i1 i2 i3 +	289 VARIAN j1 1.000 j7	j2 1.000 j8	j3 2.000 j9	j4 1.000 j10	j5 1.000 j11	j6 1.000 j12
i1 i2 i3 + i3 i4 + i1	289 VARIAN j1 1.000 j7 1.000 j13	1.000 j8	j3 2.000 j9 1.000 j15	j4 1.000 j10 1.000	j5 1.000 j11 1.000 j17	j6 1.000 j12 1.000 j18
i1 i2 i3 + i3 i4 + i1 i3	289 VARIAN j1 1.000 j7 1.000 j13	1.000 j8 1.000 j14 1.000	j3 2.000 j9 1.000 j15	j4 1.000 j10 1.000 j16 1.000	j5 1.000 j11 1.000 j17	j6 1.000 j12 1.000 j18 1.000
i1 i2 i3 + i3 i4 + i1 i3 +	289 VARIAN j1 1.000 j7 1.000 j13	1.000 j8 1.000 j14	j3 2.000 j9 1.000 j15	j4 1.000 j10 1.000 j16	j5 1.000 j11 1.000 j17 1.000 j23	j6 1.000 j12 1.000 j18
i1 i2 i3 + i3 i4 + i1 i3 + i2 i3	289 VARIAN j1 1.000 j7 1.000 j13	1.000 j8 1.000 j14 1.000	j3 2.000 j9 1.000 j15	j4 1.000 j10 1.000 j16 1.000	j5 1.000 j11 1.000 j17	j6 1.000 j12 1.000 j18 1.000 j24
i1 i2 i3 + i3 i4 + i1 i3 + i2	289 VARIAL j1 1.000 j7 1.000 j13 1.000 j19	1.000 j8 1.000 j14 1.000 j20	j3 2.000 j9 1.000 j15 1.000 j21 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000	j5 1.000 j11 1.000 j17 1.000 j23 1.000	j6 1.000 j12 1.000 j18 1.000 j24
i1 i2 i3 + i3 i4 + i1 i3 + i2 i3	289 VARIAI j1 1.000 j7 1.000 j13 1.000 j19	1.000 j8 1.000 j14 1.000	j3 2.000 j9 1.000 j15 1.000 j21	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28	j5 1.000 j11 1.000 j17 1.000 j23	j6 1.000 j12 1.000 j18 1.000 j24
i1 i2 i3 + i3 i4 + i1 i3 + i2 i3 i4 +	289 VARIAN j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25	1.000 j8 1.000 j14 1.000 j20	j3 2.000 j9 1.000 j15 1.000 j21 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000	j5 1.000 j11 1.000 j17 1.000 j23 1.000	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30
11 12 13 14 + 11 13 + 12 13 14 + 12 13 14 + 12 13 14 + 12 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	289 VARIAN j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j27	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000
11 12 13 13 + 14 + 11 13 + 12 13 14 + 11 13 14 + 11 13 14 + 11 13 14 + 11 13 14 + 14 15 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	289 VARIAN j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25	1.000 j8 1.000 j14 1.000 j20 1.000 j20	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28	j5 1.000 j11 1.000 j17 1.000 j23 1.000	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30
11 12 13 14 + 11 13 14 + 11 13 14 + 11 12 15 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	289 VARIAN j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j27	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j34	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000
11 12 13 + 13 14 + 11 13 + 12 13 14 + 11 13 + 14 + 11 13 14 + 11 13 14 + 15 15 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	289 VARIAN j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000
i1 i2 i3 + i3 i4 + i1 i3 + i1 i2 i3 i4 + i1 i2 i3 i4 + i1 i2 i3 i4 i4 + i1 i2 i3 i4	289 VARIAN j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j34	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000
i1 i2 i3 + i3 i4 + i1 i3 + i1 i1 i2 i3 i4 i4 + i1 i1 i2 i3 i4 i4 i1	289 VARIAN j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j34	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36
11 12 13 14 + 11 13 14 + 11 12 15 14 + 11 12 15 15 14 + 11 15 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	289 VARIAN j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000 j37	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000 j332	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j34 1.000 j40	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000
11 12 13 14 + 11 13 14 + 11 12 13 14 + 11 12 13 14 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	289 VARIAN j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000 j37	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000 j38 1.000	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j34	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36
11 12 13 14 + 11 13 14 + 11 12 13 14 + 11 12 13 14 + 11 11 12 13 14 + 11 11 12 13 14 + 11 11 12 13 14 + 11 11 11 11 11 11 11 11 11 11 11 11 1	289 VARIAN 1.000 j7 1.000 j13 1.000 j19 1.000 j31 1.000 j37 1.000 j43	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000 j38 1.000 j38	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j34 1.000 j40	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36
11 12 13 14 + 11 13 14 + 11 12 13 14 + 11 12 13 14 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	289 VARIAN j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000 j37	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000 j38 1.000	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j34 1.000 j40	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36
11 12 13 + 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 15 14	289 VARIAN 1.000 j7 1.000 j13 1.000 j19 1.000 j31 1.000 j37 1.000 j43	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000 j38 1.000 j38	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j34 1.000 j40	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36
11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 13 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	289 VARIAN 1.000 j7 1.000 j13 1.000 j19 1.000 j31 1.000 j37 1.000 j43	1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000 j34 1.000 j44 1.000	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j34 1.000 j40	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000 j41 1.000	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36
11 12 13 14 + 11 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 15 14 + 11 12 13 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	289 VARIAL 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j37 1.000 j37 1.000 j43 1.000	j2 1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000 j38 1.000 j44 1.000	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j33 1.000 j39 1.000 j45	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j34 1.000 j40 1.000	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000 j41 1.000	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36
11 12 13 14 + 11 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 15 14 + 11 12 13 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	289 VARIAL 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j37 1.000 j37 1.000 j43 1.000	j2 1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000 j38 1.000 j44 1.000	j3 2.000 j9 1.000 j15 1.000 j21 1.000 j33 1.000 j39 1.000 j45	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j34 1.000 j40 1.000	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000 j41 1.000	j6 1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36

Anexos M. Resultado GAMS escenario 1 y 2 mes de junio de 2018.

	229 VARIA	BLE Z.L				
	j1	j2	j3	j 4	j5	j6
i1 i2	2.000		1.000		1.000	1.000
i3		1.000		1.000		
+	j7	j8	j9	j10	j11	j12
i1 i2		1.000	1.000			
i3 i4	1.000			1.000	1.000	1.000
+	j13	j14	j15	j16	j1 7	j18
i1 i3		1.000		1.000	1.000	1.000
i4	1.000		1.000		1.000	
+	j19	j20	j21	j22	j23	j24
i1 i3			1.000	1.000	1.000	1.000
14	1.000	1.000				
+	j25	j26	j27	j28	j 29	
i1 i3		1.000	1.000	1.000	1.000	
14	1.000					
	229 VARIA	BLE COSTO.L		= 2.54187	5 E +7	
EXECUT	ION TIME	-	0.042 SECOND	5 4 MB	27.3.0 r58c	491d LEX-LEG
				4 110		TOTAL CENTER
	229 VARIAE		53000	7 110	2,121,71	
			j3	j4	j5	j6
	229 VARIAE	BLE Z.L				
i1	229 VARIAE	j2 1.000	j3	j4 1.000	j5	j6
i1 i2 i3 +	229 VARIAE	j2 1.000 j8	j3	j4	j5	j6
i1 i2 i3 + i1 i2	229 VARIAE j1 2.000	j2 1.000	j3 1.000 j9	j4 1.000 j10	j5 1.000 j11	j6 1.000
i1 i2 i3 + i1	229 VARIAE j1 2.000 j7	j2 1.000 j8	j3 1.000 j9	j4 1.000	j5 1.000	j6 1.000
i1 i2 i3 + i1 i2 i3	229 VARIAE j1 2.000 j7	j2 1.000 j8	j3 1.000 j9	j4 1.000 j10	j5 1.000 j11	j6 1.000 j12
i1 i2 i3 + i1 i2 i3 i4 + i1	229 VARIAE	1.000 j8 1.000	j3 1.000 j9 1.000	j4 1.000 j10 1.000	j5 1.000 j11 1.000	j6 1.000 j12 1.000
i1 i2 i3 + i1 i2 i3 i4 + i1 i3	229 VARIAE	1.000 j8 1.000 j14	j3 1.000 j9 1.000	j4 1.000 j10 1.000 j16	j5 1.000 j11 1.000	j6 1.000 j12 1.000 j18
i1 i2 i3 + i1 i2 i3 i4 + i1 i3	229 VARIAE	1.000 j8 1.000 j14	j3 1.000 j9 1.000 j15	j4 1.000 j10 1.000 j16	j5 1.000 j11 1.000 j17 1.000	j6 1.000 j12 1.000 j18
i1 i2 i3 i4 + i1 i3 i4 + i1	229 VARIAE	1.000 j8 1.000 j14 1.000	j3 1.000 j9 1.000 j15	j4 1.000 j10 1.000 j16 1.000	j5 1.000 j11 1.000 j17 1.000	j6 1.000 j12 1.000 j18 1.000
i1 i2 i3 i4 + i1 i3 i4 + i1	229 VARIAE	1.000 j8 1.000 j14 1.000	j3 1.000 j9 1.000 j15 1.000 j21	j4 1.000 j10 1.000 j16 1.000	j5 1.000 j11 1.000 j17 1.000 j23	j6 1.000 j12 1.000 j18 1.000
i1 i2 i3 + i1 i2 i3 i4 + i1 i3 i4 + i1 i3	229 VARIAE	1.000 j8 1.000 j14 1.000 j20 1.000 j26	j3 1.000 j9 1.000 j15 1.000 j21 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29	j6 1.000 j12 1.000 j18 1.000
i1 i2 i3 + i1 i2 i3 i4 + i1 i3 i4 + i1 i3	229 VARIAE	1.000 j8 1.000 j14 1.000 j20 1.000 j26	j3 1.000 j9 1.000 j15 1.000 j21 1.000 j27	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28	j5 1.000 j11 1.000 j17 1.000 j23 1.000	j6 1.000 j12 1.000 j18 1.000
i1 i2 i3 + i1 i3 i4 + i1 i3 i4 + i1 i3	229 VARIAE	j2 1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000	j3 1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000	j6 1.000 j12 1.000 j18 1.000

Anexos N. Resultado GAMS escenario 1 y 2 mes de julio de 2018.

	231 VARIA	BLE Z.L				
	j1	j2	j 3	j4	j 5	j6
i1 i3 i4	1.000	1.000	1.000	1.000	1.000	1.000
+	j7	j 8	j 9	j10	j11	j12
i1 i3	1.000	1.000	2.000	1.000	1.000	1.000
+	j13	j14	j15	j16	j1 7	j18
i1		1.000	1.000	-	1.000	1.000
i3 i4	1.000			1.000		
+	j19	j20	j21	j 22	j 23	j 24
i1 i2 i3 i4	1.000	1.000	1.000	1.000	1.000	1.000
+	j25	j 26	j 27	j 28	j 29	j 30
i1 i3 i4	1.000	2.000	1.000	1.000	1.000	1.000
14	1.000					
	231 VARIA	BLE COSTO.L		= 2.63942	7E+7	
EXECUT	ION TIME	=	0.015 SECOND	OS 3 MB	27.3.0 r58	c491d LEX-LEG
	231 VARIA	BLE Z.L				
	231 VARIA	J2	j3	j 4	j 5	j6
i1 i3 i4			j3 1.000	j4 1.000	j5 1.000	j6 1.000
i1 i3	j1	j2				
i1 i3 i4	j1 1.000	j2 1.000	1.000	1.000	1.000	1.000
i1 i3 i4 +	j1 1.000 j7	j2 1.000 j8	1.000 j9	1.000 j10	1.000 j11	1.000 j12
i1 i3 i4 + i1 i3	j1 1.000 j7 1.000	j2 1.000 j8 1.000	1.000 j9 1.000	1.000 j10 1.000	1.000 j11 1.000	1.000 j12 1.000
i1 i3 i4 + i1 i3 + i1 i3	j1 1.000 j7 1.000 j13	j2 1.000 j8 1.000 j14 1.000	1.000 j9 1.000 j15	1.000 j10 1.000 j16 1.000	1.000 j11 1.000 j17	1.000 j12 1.000 j18 1.000
i1 i3 i4 + i1 i3 i4 + i1 i3 i4 + i1	j1 1.000 j7 1.000 j13	j2 1.000 j8 1.000 j14 1.000	1.000 j9 1.000 j15 1.000	1.000 j10 1.000 j16 1.000	1.000 j11 1.000 j17	1.000 j12 1.000 j18 1.000
i1 i3 i4 + i1 i3 i4 + +	j1 1.000 j7 1.000 j13 1.000 j19	j2 1.000 j8 1.000 j14 1.000	1.000 j9 1.000 j15 1.000	1.000 j10 1.000 j16 1.000	1.000 j11 1.000 j17	1.000 j12 1.000 j18 1.000
i11 i3 i4 + i11 i3 i4 + i11 i2 i3	j1 1.000 j7 1.000 j13 1.000 j19	j2 1.000 j8 1.000 j14 1.000	1.000 j9 1.000 j15 1.000	1.000 j10 1.000 j16 1.000	1.000 j11 1.000 j17 1.000	1.000 j12 1.000 j18 1.000
i1 i3 i4 + i1 i3 i4 + i1 i2 i3 i4	j1 1.000 j7 1.000 j13 1.000 j19 1.000	j2 1.000 j8 1.000 j14 1.000	1.000 j9 1.000 j15 1.000 j21 1.000	1.000 j10 1.000 j16 1.000 j22 1.000	1.000 j11 1.000 j17 1.000 j23	1.000 j12 1.000 j18 1.000 j24
i11 i3 i4 + i11 i2 i3 i4 + i11 i3 i4 + i11 i3 i4	j1 1.000 j7 1.000 j13 1.000 j19 1.000	j2 1.000 j8 1.000 j14 1.000 j20 1.000 j26 2.000	1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000	1.000 j10 1.000 j16 1.000 j22 1.000	1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000	1.000 j12 1.000 j18 1.000 j24 1.000

Anexos O. Resultado GAMS escenario 1 y 2 mes de agosto de 2018.

1	1							
11	1.000 1.000		302 VARIA	BLE Z.L				
12	1.000 1.000		j1	j2	j 3	j 4	j 5	j6
13	1.000 1.000		2.000					
1	1.000			1 000	1 000		1.000	
11 1.000	1.000			1.000	1.000	1.000		1.000
11 1.000	1.000	+	17	18	19	110	111	112
13	1.000 1.000				,	-		
1 1.000	1.000 1.000		1.000	2.000	1.000	1.000	1.000	1.000
1 1.000	1.000 1.000	+	113	114	115	116	117	118
1.000 1.000	1.000 1.000			,	,		-	
# j19 j20 j21 j22 j23 1 1.000	119	13	1.000			1.000	1.000	2.000
11	1.000 1.000	14		1.000	1.000			
12	1.000 1.000	+	j19	j20	j21	j22	j23	j24
13 1.000 +	1.000 1.000				1.000			1.000
1	1.000 1.00		1.000	1.000			1.000	
11 1.000	1.000 1.000					1.000		
12	1.000 1.000	+	j25	j26	j27	j28	j29	j30
12	1.000 1.000	1	1.000					2.000
	1.000 331	12					1.000	
11 1.000 2.000 1.0	1000 2.000 1			1.000	1.000	1.000		
11 1.000 2.000 1.0	1000 2.000 1	+	131	132	133	134	135	136
1.000	1.000 1.000					154	100	
## j37 j38 j39 j40 j41 11	1.000		1.000	2.000	1.000	1.000	1.000	2.000
11	1.000 1.000		427	420	420			442
122	1.000 1.000		137	130	139	140)+1	
13	1.000				1.000			1.000
11	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 VARIABLE COSTO.L = 4.403293E+7 VARIABLE Z.L j1 j2 j3 j4 j5 j6 1.000 1.000 1.000 1.000 j7 j8 j9 j10 j11 j12 2.000 1.000 1.000 1.000 133 j14 j15 j16 j17 j18 100 1.000 1.000 1.000 119 j20 j21 j22 j23 j24 1.000 1.000 1.000		1.000	1.000		1.000	1.000	
12	1.000	+	j43	j44	j45	j46	j47	j48
12 1.000 1.0	VARIABLE COSTO.L = 4.403293E+7 VARIABLE COSTO.L = 4.403293E+7 VARIABLE Z.L j1 j2 j3 j4 j5 j6 1.000	1			1.000	1,000	1.000	
EXECUTION TIME = 0.052 SECONDS 4 MB 27.3.0 r58c491d 302 VARIABLE Z.L j1 j2 j3 j4 j5 1.000 1.000 1.000 1.000 1 1 j2 j3 j4 j5 1.000 1.000 1.000 1.000 1 1 j2 j3 j4 j5 1.000 1.000 1.000 1 1 j2 j3 j4 j5 1.000 1.000 1.000 1 1 j2 j3 j4 j5 1 j4 j5 1 j5 j2	VARIABLE COSTO.L = 4.403293E+7 IME = 0.052 SECONOS	12	1.000	1 000				1.000
EXECUTION TIME = 0.052 SECONDS 4 MB 27.3.0 r58c491d 1	VARIABLE COSTOLL 4 MB 27.3.0 r58c491d LEX-LEG 1.000	.3		1.000				
302 VARIABLE Z.L j1	VARIABLE Z.L j1 j2 j3 j4 j5 j6 1.000 1.000 1.000 1.000 j7 j8 j9 j10 j11 j12 2.000 1.000 1.000 1.000 1.000 1.000 1.000		302 VARIA	BLE COSTO.L		= 4.40329	3E+7	
302 VARIABLE Z.L j1	VARIABLE Z.L j1 j2 j3 j4 j5 j6 1.000 1.000 1.000 1.000 j7 j8 j9 j10 j11 j12 2.000 1.000 1.000 1.000 1.000 1.000 1.000							
j1 j2 j3 j4 j5 1.000 1.000 1.000 1 + j7 j8 j9 j10 j11 1.000 1.000 1.000 1 + j13 j14 j15 j16 j17 11 1.000 1.000 1.000 1.000 1 + j19 j20 j21 j22 j23 11 1.000 1.000 1.000 1 1 j2	ji j2 j3 j4 j5 j6 1.000 1.000 1.000 1.000 j7 j8 j9 j10 j11 j12 2.000 1.000 1.000 1.000 133 j14 j15 j16 j17 j18 100 1.000 1.000 1.000 119 j20 j21 j22 j23 j24 1.000 1.000 1.000	EXECUT	ION TIME	=	0.052 SECON	DS 4 MB	27.3.0 r58	c491d LEX-LEG
12	1.000 1.000		302 VARIAE	BLE Z.L				
13 1.000 1.000 1.000 1 + j7 j8 j9 j10 j11 11 2.000 1.000 1.000 1 14 1.000 1.000 1.000 1 14 1.000 1.000 1.000 1 14 1.000 1.000 1.000 1 14 1.000 1.000 1.000 1 14 1 1.000 1.000 1.000 1 14 1 1.000 1.000 1.000 1 14 1 1 1.000 1.000 1.000 1 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.000 1.000		j1	j2	j3	j 4	j5	j6
1	1.000 1.000 1.000 1.000 1.000 1.000						1.000	
+ j7 j8 j9 j10 j11 11	j7 j8 j9 j10 j11 j12 2.000 1.000 1.000 1.000 1.000 133 j14 j15 j16 j17 j18 1000 1.000 1.000 1.000 1.000 119 j20 j21 j22 j23 j24 1000 1.000 1.000 1.000 1.000 125 j26 j27 j28 j29 j30 1000 1.000 1.000 1.000 1.000 131 j32 j33 j34 j35 j36 100 1.000 1.000 1.000 1.000 137 j38 j39 j40 j41 j42 100 1.000 1.000 1.000 1.000 143 j44 j45 j46 j47 j48 100 1.000 1.000 1.000 1.000 100 1.000 1.000 1.000		1.000	1.000	1.000	1.000		1.000
11	2.000 1.000		47		do.	410	200	412
13	1.000 1.000 1.000 1.000		37		Ja)10		
14 1.000 + j13 j14 j15 j16 j17 11 1.000 1 1.000 1.000 1.000 + j19 j20 j21 j22 j23 11 1.000 1.000 1.000 1 1.000 1.000 1 1.000	113			2.000	1.000	1.000	1.000	1.000
11 1.000 1.0	1.000 1.000		1.000					
134 + j19 j20 j21 j22 j23 114 1.000 1.000 1.000	1.000 1.000	+	j13	j14	j15	j16	j17	j18
134 + j19 j20 j21 j22 j23 114 1.000 1.000 1.000	1.000 1.000	i1	1.000					2.000
+ j19 j20 j21 j22 j23 111 122 133 1.000	119 j20 j21 j22 j23 j24 1.000	13		1 000	1 000	1.000	1.000	
11	1.000 1.000							
12	1.000 1.000	+	j19	j20	j21	j22	j23	j24
13 1.000 1.0	1.000 1.000						1 000	1.000
+ j25 j26 j27 j28 j29 1 1.000	1.000	i3	1.000	1.000	1.000		1.000	
11 1.000 1.0	1.000 1.000 1.000 2.000 1.000	14				1.000		
12	1.000 1.000	+	j25	j26	j27	j28	j29	j30
13	1.000 1.000	i1	1.000					2.000
14	1.000 31				1.000	1.000	1.000	
11	1.000 1.000 2.000 1.000 2.000			1.000				
11	1.000 1.000 2.000 1.000 2.000	+	j31	j32	j33	j34	j35	j36
13 1.000 1.0	1.000 1.000	i1		2.000	1.000			2.000
11	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000		1.000			1.000	1.000	
12 1.000 1.0	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	+	j37	j38	j39	j40	j41	j42
12 1.000 1.0	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1						
+ j43 j44 j45 j46 j47 i1 1.000 1.000 1.000 i4 1.000 1.000	143 j44 j45 j46 j47 j48 1.000 1.000 1.000 1.000 1.000 1.000 VARIABLE COSTO.L = 4.559066E+7	i2	1.000	1 000	1.000	1 000	1 000	
i1 1.000 1.000 1.000 1.000 i4 1 1.000 1.000 1.000 i4 1.000 1.000 i4 1.000 1.000 i4 1.000 1.000 i1 1.00	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000				1202			
13 1.000 1.000 14 1	1.000 1.000 1.000 1.000 VARIABLE COSTO.L = 4.559066E+7		j43	j44				j48
1	1.000 VARIABLE COSTO.L = 4.559066E+7		1.000	1,000	1.000	1.000	1.000	
302 VARIABLE COSTO.L = 4.559066E+7			2.500	2.000				1.000
302 VARIABLE COSTO.L = 4.559066E+7								
	ME = 0.052 SECONDS 4 MB 27.3.0 r58c491d LEX-LEG		302 VARIAE	BLE COSTO.L		= 4.559066	5E+7	
EXECUTION TIME = 0.052 SECONDS 4 MB 27.3.0 r58c491d	- 0.032 3CC0103 4 FID 27.3.0 F30C4310 LEX-LEG			529	9 952 SECONO	os a mp	27 3 A pEO	401d EV-156
- 0.032 SECONDS 4 FID 27.3.0 F58C4910		EXECUT						

Anexos P. Resultado GAMS escenario 1 y 2 mes de septiembre de 2018.

	284 VARIAE	BLE Z.L				
	j1	j2	јз	j 4	j 5	j6
i1 i2	1.000	1.000			1.000	2.000
i3 i4			1.000	1.000		2.000
+	j 7	j8	j 9	j10	j11	j12
il	1.000	1.000	1.000		1.000	
i3 i4				1.000		1.000
+	j13	j14	j15	j16	j17	j18
i1 i2	2.000		1.000		1.000	
i3 i4		1.000		1.000		1.000
+	j19	j20	j21	j 22	j23	j24
il		1.000		1.000		1.000
i3 +	1.000 j25	j26	1.000 j27	j28	1.000 j29	j30
il	,20	,20	,2,	1.000	120	,50
i2 i3		1.000	1.000		1.000	1.000
14	1.000			100		
+	j31	j32	j33	j34	j35	j36
i1 i3	1.000	1.000	1.000	1.000	1.000	1.000
+	j37	j38	j39	j40	j41	j42
i1 i2	1.000				1.000	1.000
i3 i4		1.000	1.000	1.000		
+	j43					
i1	1.000					
	284 VARIAE	BLE COSTO.L		= 3.15695	3E+7	
EXECUT	TION TIME	-	0.030 SECOND	5 4 MB	27.3.0 r580	491d LEX-LEG
EXECUT	284 VARIAE				27.3.0 r580	c491d LEX-LEG
		= BLE Z.L j2	0.030 SECOND	5 4 MB	j 5	j6
i1 i2	284 VARIAE	j2		j 4		
i1	284 VARIAE				j 5	j6
i1 i2 i3 i4 +	284 VARIAE j1 1.000	j2 1.000 j8	j3 1.000 j9	j 4	j5 1.000 j11	j6
i1 i2 i3 i4 + i1 i3	284 VARIAE j1 1.000	j2 1.000	j3 1.000	j4 1.000	j5 1.000	j6 2.000 j12
i1 i2 i3 i4 + i1 i3 i4	284 VARIAE j1 1.000 j7 1.000	j2 1.000 j8 1.000	j3 1.000 j9 1.000	j4 1.000 j10 1.000	j5 1.000 j11 1.000	j6 2.000 j12 1.000
i1 i2 i3 i4 + i1 i3 i4 +	284 VARIAE j1 1.000 j7 1.000	j2 1.000 j8	j3 1.000 j9 1.000	j4 1.000 j10 1.000 j16	j5 1.000 j11 1.000	j6 2.000 j12
i1 i2 i3 i4 + i1 i3 i4	284 VARIAE j1 1.000 j7 1.000	j2 1.000 j8 1.000	j3 1.000 j9 1.000	j4 1.000 j10 1.000	j5 1.000 j11 1.000	j6 2.000 j12 1.000
i1 i2 i3 i4 + i1 i3 i4 + i3	284 VARIAE j1 1.000 j7 1.000	j2 1.000 j8 1.000	j3 1.000 j9 1.000	j4 1.000 j10 1.000 j16	j5 1.000 j11 1.000	j6 2.000 j12 1.000 j18
i1 i2 i3 i4 + i1 i3 i4 + i1 i2 i2	284 VARIAE j1 1.000 j7 1.000 j13 1.000	j2 1.000 j8 1.000 j14 1.000 j20	j3 1.000 j9 1.000 j15 1.000 j21	j4 1.000 j10 1.000 j16 1.000	j5 1.000 j11 1.000 j17 1.000	j6 2.000 j12 1.000 j18 1.000
i1 i2 i3 i4 + i1 i3 i4 + i1 i3 i4 + i1	284 VARIAE j1 1.000 j7 1.000 j13 1.000	j2 1.000 j8 1.000 j14 1.000 j20	j3 1.000 j9 1.000 j15 1.000	j4 1.000 j10 1.000 j16 1.000 j22	j5 1.000 j11 1.000 j17 1.000	j6 2.000 j12 1.000 j18 1.000 j24
i1 i2 i3 i4 + i1 i3 i4 + i3 i4 +	284 VARIAE j1 1.000 j7 1.000 j13 1.000 j19	j2 1.000 j8 1.000 j14 1.000 j20	j3 1.000 j9 1.000 j15 1.000 j21 1.000	j4 1.000 j10 1.000 j16 1.000 j22	j5 1.000 j11 1.000 j17 1.000	j6 2.000 j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i3 i4 + i3 i4 + i1 i3 i4 +	284 VARIAE j1 1.000 j7 1.000 j13 1.000 j19	j2 1.000 j8 1.000 j14 1.000 j20	j3 1.000 j9 1.000 j15 1.000 j21 1.000 j27	j4 1.000 j10 1.000 j16 1.000 j22 1.000	j5 1.000 j11 1.000 j17 1.000 j23 1.000	j6 2.000 j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i3 i4 + i1 i2 i3 i4 + i1	284 VARIAE j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25	j2 1.000 j8 1.000 j14 1.000 j20 1.000	j3 1.000 j9 1.000 j15 1.000 j21 1.000 j27	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28	j5 1.000 j11 1.000 j17 1.000 j23 1.000	j6 2.000 j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i2 i3 i4 + ti1 i1 i3 + ti1 i1 i	284 VARIAE j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31	j2 1.000 j8 1.000 j14 1.000 j20 1.000 j26	j3 1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j34	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35	j6 2.000 j12 1.000 j18 1.000 j24 1.000
i1 i2 i3 i4 + i1 i4 i4 + i1 i4 i4 i4 i1 i4	284 VARIAE j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000	j2 1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32	j3 1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j34 1.000	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35	j6 2.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36 1.000
i1 i2 i3 i4 + i1 i2 i3 i4 + i1 i2 i3 i4 + i1 i1 i3 i4 + i1 i1 i1 i3 i4 + i1	284 VARIAE j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31	j2 1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000 j38	j3 1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j34	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000 j41	j6 2.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36 1.000
i1 i2 i3 i4 + i1 i4 i4 + i1 i4 i4 i4 i1 i4	284 VARIAE j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000 j37	j2 1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32	j3 1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j34 1.000	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35	j6 2.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36 1.000
i1 i2 i3 i4 + i1 i3 i4 i4 + i1 i3 i4 i4 i1 i3 i4 i1 i1 i3 i4 i1 i1 i3 i4 i1	284 VARIAE j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000 j37	j2 1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000 j38	j3 1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000 j39	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j34 1.000 j34	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000 j41	j6 2.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36 1.000
i1 i2 i3 i4 + i1 i2 i3 i4 + i1 i4 i4 i4 + i1 i4	284 VARIAE j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000 j37 1.000	j2 1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000 j38	j3 1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000 j39	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j34 1.000 j34	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000 j41	j6 2.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36 1.000
i1 i2 i3 i4 + i1 i4 i4 + i1 i4	284 VARIAE j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000 j37 1.000	j2 1.000 j8 1.000 j14 1.000 j20 1.000 j26 1.000 j32 1.000 j38 1.000	j3 1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000 j39	j4 1.000 j10 1.000 j16 1.000 j22 1.000 j34 1.000 j34	j5 1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000 j35 1.000 j41 1.000	j6 2.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36 1.000

Anexos Q. Resultado GAMS escenario 1 y 2 mes de octubre de 2018.

---- 277 VARIABLE Z.L

	j1	j2	j3	j 4	j5	j6
i1 i3	1.000	1.000	1.000	1.000	1 000	1.000
i4 +	j7	j8	j9	j10	1.000 j11	j12
i1		1.000				-
i2 i3 i4	1.000		1.000	1.000	1.000	1.000
+	j13	j14	j15	j16	j17	j18
i1				1.000		
i2 i3 i4	1.000	2.000	1.000		1.000	1.000
+	j1 9	j20	j21	j 22	j23	j24
i1 i3 i4	1.000	1.000	1.000	1.000	1.000	1.000
+	j 25	j 26	j 27	j28	j29	j30
i1	,	1.000	,	,	1.000	,,,,
i2 i3	1.000		1.000	1.000		
i4						1.000
+	j31	j32	j33	j34	j35	j36
i1 i3	1.000	1.000	1.000	1.000	1.000	1.000
+	j 37	j38	j39	j40	j41	j 42
i1 i2	1.000					2.000
i3 i4	1.000	1.000	1.000	1.000	1.000	
	277 VARIA	BLE COSTO.L		= 3.33578	3E+7	
EXECUT	ION TIME	-	0.020 SECON	DS 4 MB	27.3.0 r58	491d LEX-LEG
	277 VARIA	BLE Z.L				
	277 VARIA j1	BLE Z.L j2	j3	j 4	j 5	j 6
i1 i3 i4			j3 1.000	j4 1.000	j5 1.000	j6 1.000
i1 i3	j1	j2				
i1 i3 i4 +	j1 1.000	j2 1.000 j8	1.000	1.000	1.000 j11	1.000 j12
i1 i3 i4 + i3 i4	j1 1.000 j7 1.000	j2 1.000 j8 1.000	1.000 j9 1.000	1.000 j10 1.000	1.000 j11 1.000	1.000 j12 1.000
i1 i3 i4 + i3 i4 +	j1 1.000 j7	j2 1.000 j8	1.000 j9	1.000 j10	1.000 j11	1.000 j12
i1 i3 i4 + i3 i4 + i1 i2 i3	j1 1.000 j7 1.000	j2 1.000 j8 1.000	1.000 j9 1.000	j10 1.000 j16	1.000 j11 1.000 j17	1.000 j12 1.000 j18
i1 i3 i4 + i1 i2 i3 i4	j1 1.000 j7 1.000 j13	j2 1.000 j8 1.000 j14 2.000	1.000 j9 1.000 j15	1.000 j10 1.000 j16 1.000	1.000 jl1 1.000 jl7	1.000 j12 1.000 j18
i1 i3 i4 + i3 i4 + i1 i2 i3 i4 +	j1 1.000 j7 1.000 j13	j2 1.000 j8 1.000 j14 2.000	1.000 j9 1.000 j15 1.000	j10 1.000 j16	1.000 j11 1.000 j17	1.000 j12 1.000 j18
i1 i3 i4 + i1 i2 i3 i4	j1 1.000 j7 1.000 j13	j2 1.000 j8 1.000 j14 2.000	1.000 j9 1.000 j15	1.000 j10 1.000 j16 1.000	1.000 jl1 1.000 jl7	1.000 j12 1.000 j18
i1 i3 i4 + i1 i2 i3 i4 + i1 i3 i4	j1 1.000 j7 1.000 j13 1.000 j19	j2 1.000 j8 1.000 j14 2.000	1.000 j9 1.000 j15 1.000	1.000 j10 1.000 j16 1.000	1.000 j11 1.000 j17 1.000 j23	1.000 j12 1.000 j18
i1 i3 i4 + i3 i4 + i1 i2 i3 i4 + i1 i3 i4 +	j1 1.000 j7 1.000 j13 1.000 j19 1.000	j2 1.000 j8 1.000 j14 2.000	1.000 j9 1.000 j15 1.000 j21 1.000	1.000 j10 1.000 j16 1.000 j22 1.000 j28	1.000 j11 1.000 j17 1.000 j23	1.000 j12 1.000 j18 1.000 j24
i1	j1 1.000 j7 1.000 j13 1.000 j19 1.000	j2 1.000 j8 1.000 j14 2.000 j20 1.000	1.000 j9 1.000 j15 1.000 j21 1.000	1.000 j10 1.000 j16 1.000 j22	1.000 j11 1.000 j17 1.000 j23 1.000	1.000 j12 1.000 j18 1.000 j24 1.000 j30
i1 i3 i4 + i1 i2 i3 i4 i4 + i1 i2 i3 i4 i4 i1 i2 i3 i4 i4 i1 i1 i1 i2 i3 i4 i4 i1	j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25	j2 1.000 j8 1.000 j14 2.000 j20 1.000 j26 1.000	1.000 j9 1.000 j15 1.000 j21 1.000 j27	1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000	1.000 j11 1.000 j17 1.000 j23 1.000 j29	1.000 j12 1.000 j18 1.000 j24 1.000 j30
i1 i3 i4 + i1 i2 i3 i4 + i1 i2 i3 i4 + i1 i2 i3 i4 + i1 i4 + i1 i2 i3 i4 + i1 i2 i3 i4 + i1 i2 i3 i4 + i1 i1 i2 i3 i4 i4 + i1	j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31	j2 1.000 j8 1.000 j14 2.000 j20 1.000	1.000 j9 1.000 j15 1.000 j21 1.000	1.000 j10 1.000 j16 1.000 j22 1.000 j28	1.000 j11 1.000 j17 1.000 j23 1.000	1.000 j12 1.000 j18 1.000 j24 1.000 j30
i1 i3 i4 + i1 i2 i3 i4 i4 + i1 i2 i3 i4 i4 i1 i2 i3 i4 i4 i1 i1 i1 i2 i3 i4 i4 i1	j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25	j2 1.000 j8 1.000 j14 2.000 j20 1.000 j26 1.000	1.000 j9 1.000 j15 1.000 j21 1.000 j27	1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000	1.000 j11 1.000 j17 1.000 j23 1.000 j29	1.000 j12 1.000 j18 1.000 j24 1.000 j30
i1	j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31	j2 1.000 j8 1.000 j14 2.000 j20 1.000 j26 1.000	1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000	1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000	1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000	1.000 j12 1.000 j18 1.000 j24 1.000 j30
i1	j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000	j2 1.000 j8 1.000 j14 2.000 j20 1.000 j32 1.000	1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000	1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000	1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000	1.000 j12 1.000 j18 1.000 j24 1.000 j30
i1	j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000	j2 1.000 j8 1.000 j14 2.000 j20 1.000 j26 1.000 j32 1.000 j38	1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000	1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000	1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000	1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36 1.000
11 13 14 + 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14 + 11 14 14 14 14 14 14 14 14 14 14 14 14	j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000	j2 1.000 j8 1.000 j14 2.000 j20 1.000 j26 1.000 j32 1.000 j38	1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000 j39	1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j40	1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000	1.000 j12 1.000 j18 1.000 j24 1.000 j30
i1	j1 1.000 j7 1.000 j13 1.000 j19 1.000 j25 1.000 j31 1.000	j2 1.000 j8 1.000 j14 2.000 j20 1.000 j26 1.000 j32 1.000 j38	1.000 j9 1.000 j15 1.000 j21 1.000 j27 1.000 j33 1.000 j39	1.000 j10 1.000 j16 1.000 j22 1.000 j28 1.000 j34 1.000	1.000 j11 1.000 j17 1.000 j23 1.000 j29 1.000	1.000 j12 1.000 j18 1.000 j24 1.000 j30 1.000 j36 1.000

Anexos R. Resultado GAMS escenario 1 y 2 mes de noviembre de 2018.

---- 272 VARIABLE Z.L

	j1	j2	j 3	j 4	j 5	j6
i1 i2	1.000		1.000	1.000		
i3 i4	1.000	1.000			1.000	1.000
+	j7	j8	j9	j10	j11	j12
i1		1.000	2.000			1.000
i2 i3	1.000			1.000	1.000	
+	j13	j14	j 15	j16	j17	j18
i1 i2 i3	1.000	1.000	2.000	1.000	1.000	1.000
+	j19	j20	j 21	j 22	j23	j24
i3 i4	1.000	1.000	1.000	1.000	1.000	1.000
+	j25	j 26	j 27	j28	j29	j30
i1 i2	2.000	1.000	1.000	1.000	1.000	1.000
+	j31	j32	j 33	j 34	j35	j36
i1	1.000			2.000		
i2 i3		1.000	1.000		1.000	1.000
+	j37	j38	j 39	j40	j41	
i1	1.000			1.000	1.000	
i2 i3		1.000	1.000			
	272 VARIAE	BLE COSTO.L		3.095935	5E+7	
EXECUT	ION TIME		0.044 SECONDS	4 MB	27.3.0 r58	c491d LEX-LEG
	271 VARIA	BLE Z.L				
	j1	j2	јз	j4	j 5	j6
i1 i3	1.000	1.000	1.000	1.000		1.000
i4		1.000	1.000	1.000	1.000	1.000
+	j 7	j8	j 9	j10	j11	j12
i1 i2		1.000		1.000		1.000
i3	1.000	***	1.000	300	1.000	300
+ i1	j13 1.000	j14	j15	j16	j1 7	j18
i2 i3	1.000	1.000	2.000		1.000	1.000
i4		1.000		1.000	1.000	1.000
+	j1 9					
	•	j20	j21	j22	j23	j24
i3 i4	1.000	1.000	1.000	j22 1.000	j23 1.000	j24 1.000
2.4						
i4 + i1	1.000 j25	1.000	1.000	1.000	1.000	1.000
i4 +	1.000	1.000 j26	1.000	1.000 j28	1.000	1.000
i4 + i1 i2 i3	1.000 j25	1.000 j26	1.000 j27	1.000 j28	1.000 j29	1.000 j30
i4 + i1 i2 i3 i4 +	1.000 j25 2.000	1.000 j26 1.000	1.000 j27 1.000 j33	1.000 j28 1.000	1.000 j29 1.000	1.000 j30 1.000 j36
i4 + i1 i2 i3 i4 +	1.000 j25 2.000	1.000 j26 1.000	1.000 j27 1.000 j33	1.000 j28 1.000	1.000 j29 1.000	1.000 j30 1.000
14 + 11 12 13 14 + 11 12 13	1.000 j25 2.000	1.000 j26 1.000	1.000 j27 1.000 j33 1.000	1.000 j28 1.000	1.000 j29 1.000 j35	1.000 j30 1.000 j36
14 + 11 12 13 14 + 11 12 13 14 + 11	1.000 j25 2.000 j31	1.000 j26 1.000 j32	1.000 j27 1.000 j33 1.000	1.000 j28 1.000 j34 2.000	1.000 j29 1.000 j35	1.000 j30 1.000 j36
14 + 11 12 13 14 + 11 12 13 14 +	1.000 j25 2.000 j31 1.000	1.000 j26 1.000 j32	1.000 j27 1.000 j33 1.000	1.000 j28 1.000 j34 2.000	1.000 j29 1.000 j35 1.000	1.000 j30 1.000 j36
14 + 11 12 13 14 + 11 12 13 14 + 11 12 13 14	1.000 j25 2.000 j31 1.000	1.000 j26 1.000 j32 1.000 j38	1.000 j27 1.000 j33 1.000	1.000 j28 1.000 j34 2.000	1.000 j29 1.000 j35 1.000 j41 1.000	1.000 j30 1.000 j36

Anexos S. Resultado GAMS escenario 1 y 2 mes de diciembre de 2018.

	283 VARIA	BLE Z.L				
	j1	j2	j 3	j4	j 5	j6
i1	1.000	1.000				1.000
13				1.000	1.000	
14			1.000			
+	j 7	j8	j 9	j10	j11	j12
i1		1.000				
i3	1.000		1.000	1.000		
14					1.000	1.000
+	j13	j14	j15	j16	j17	j18
i1		1.000				1.000
i2			1.000			
i3	1.000			1.000		
14					1.000	
+	j19	j20	j21	j22	j23	j24
i1		1.000			2.000	
i2				2.000		
i3			1.000			1.000
14	1.000					
+	j25	j26	j27	j28	j29	j30
i1					1.000	
12	1.000	5002-Marine 302				
13		1.000				1.000
i4			1.000	1.000		
+	j31	j32	j33	j34	j35	j36
i1	1.000	1.000	1.000			
i2				1.000		
13					1.000	1.000
+	j37	j38	j39	j40	j41	j42
i1			1.000	2.000	1.000	
i2		1.000				
13	1.000					1.000
+	j43					
12	1.000					
	283 VARIA	BLE COSTO.L		= 3.67208	5E+7	
	TON TIME					

EXECUT	ION TIME	=	0.021 SECONDS	4 ME	27.3.0 r580	:491d LEX-LE
	283 VARIAE	BLE Z.L				
	j1	j2	j 3	j 4	j5	j6
i1						1.000
i3 i4	1.000	1.000	1.000	1.000	1.000	
14			1.000			
+	j 7	j8	j9	j10	j11	j12
i3	1.000	1.000	1.000		1.000	
i4				1.000		1.000
+	j13	j14	j15	j16	j17	j18
1		1.000				1.000
12			1.000			
i3 i4	1.000			1.000	1.000	
+	j19	j20	j21	j22	j23	j24
i1		1.000			2.000	
12				2.000		
i3 i4	1.000		1.000			1.000
+	j25	j26	j27	j28	j29	j30
i1				2.000		
i2					1.000	
13	1.000	1 000	1 000			1.000
14		1.000	1.000			
+	j31	j32	j33	j34	j35	j36
i1	1.000	1.000				
13			1.000		1.000	1.000
14				1.000		
+	j37	j38	j39	j40	j41	j42
i1			1.000	2.000		
12		1.000				
13	1.000				1.000	1.000
+	j43					
12	1.000					
	283 VARIAE	BLE COSTO.L		4.02076	60E+7	
			0.027 SECONDS			