DISEÑO DE UNA ESTRUCTURA DE PAVIMENTO FLEXIBLE PARA EL CORREDOR VIAL SAN JUAN- PULI, DESDE EL PR 9+000 AL PR 10+000 INSPECION SAN NICOLÁS.

ING. NARDA VIVIANA LANCHEROS RAMÍREZ CÓDIGO: 6100421

UNIVERSIDAD MILITAR NUEVA GRANADA FACULTAD DE INGENIERÍA – DIRECCIÓN DE POSGRADOS ESPECIALIZACIÓN EN INGENIERÍA DE PAVIMENTOS BOGOTÁ D.C.

2022

DISEÑO DE UNA ESTRUCTURA DE PAVIMENTO FLEXIBLE PARA EL CORREDOR VIAL SAN JUAN- PULI, DESDE EL PR 9+000 AL PR 10+000 INSPECION SAN NICOLÁS.

I.C. NARDA VIVIANA LANCHEROS RAMÍREZ

Trabajo de grado para optar por el título de ESPECIALISTA EN INGENIERÍA DE PAVIMENTOS

DIRECTOR DEL TRABAJO DE GRADO ING. FELIPE RIAÑO

UNIVERSIDAD MILITAR NUEVA GRANADA

FACULTAD DE INGENIERÍA – DIRECCIÓN DE POSGRADOS

ESPECIALIZACIÓN EN INGENIERÍA DE PAVIMENTOS

BOGOTÁ D.C.

2022

NOTAS DE ACEPTACIÓN

DIRECTOR		
DIRECTOR		
	DIRECTOR	
JURADO	HID A DA	

DEDICATORIAS Y AGRADECIMIENTO

Primero quiero darle agradecimiento a Dios por darme la sabiduría para terminar mis estudios con éxito, segundo al ingeniero Felipe Riaño y Carlos Gonzales por el seguimiento y apoyo en la ejecución de mi proyecto de grado. Igualmente quiero agradecerles a mis padres Capitolino Lancheros y Argenis Ramírez por el apoyo que me dieron moralmente como económicamente, a mi pareja Duván Andrés Bonilla por estar siempre presente en cada una de mis materias y apoyarme con sus conocimientos en este trabajo.

RESUMEN

El presente trabajo tiene como propósito realizar el diseño de una estructura de pavimento flexible por medio de la metodología AASHTO-93 para el corredor vial que comunica al Municipio de San Juan de Rioseco con el Municipio de Pulí, específicamente desde el Pr 9+000 a 10+000 de la Inspección de San Nicolás; con el fin de mejorar la calidad de vida de las personas que viven alrededor.

De acuerdo con la investigación realizada se identifica que el CBR es menor que 4% en algunos tramos, donde se va a realizar un mejoramiento con rajón de 43cm, igualmente se van a ejecutar obras de drenaje cunetas y filtro de 1.20mx 0.60m alrededor del talud para recoger el agua superficial para evitar que el nivel freático arrastre todo el material fino de la estructura de pavimento.

Este proyecto se describe a partir de un capítulo preliminar, seguidamente se detalla la estructura del pavimento, las obras de arte y la señalización, destacando que se ha considerado que su ejecución tomara 10 meses y un costo \$2,170,096,767.60.

Palabras clave: Ingeniería de pavimento; pavimento flexible; CBR, drenaje, base, subbase, tránsito y módulo resiliente.

ABSTRACT

The purpose of this work is to carry out the design of a flexible pavement structure through the

AASHTO-93 methodology for the road corridor that connects the Municipality of San Juan de

Rioseco with the Municipality of Puli, specifically from Pr 9+000 to 10+000 from the San Nicolas

Inspection; in order to improve the quality of life of the people who live around.

According to the investigation carried out, it is identified that the CBR is less than 4% in some

sections, where an improvement with a 43cm rajón will be carried out, as well as drainage works,

ditches and a 1.20mx 0.60m filter around the slope to collect surface water to prevent the water

table from dragging all the fine material from the pavement structure.

This project is described from a preliminary chapter, then the pavement structure, works of art

and signage are detailed, highlighting that it has been considered that its execution will take 10

months and a cost of \$2,170,096,767.60.

Keywords: Pavement engineering; flexible pavement; CBR, drainage, base, subbase, traffic and

resilient module.

Índice de Contenido

RESUMEN	5
ABSTRACT	6
INTRODUCCIÓN	10
PLANTEAMIENTO PROBLEMA	12
OBJETIVOS	13
Objetivo General	13
Objetivos Específicos	13
JUSTIFICACIÓN Y DELIMITACIÓN DEL TRABAJO	14
MARCO TEÓRICO	15
Estructura de Pavimento	15
Pavimento Flexible	15
Obras de Drenaje	15
Tránsito	16
Método de Diseño de Pavimento (AASHTO-93)	17
METODOLOGÍA	19
DESARROLLO DEL CASO DE ESTUDIO	22
Localización	22
Visita de campo	24
ANÁLISIS Y RESULTADOS	26
Estudio Geotécnico	26
Estudio Hidrológico	29
Delimitación de la Cuenca	32
Tiempos de Concentración (Tc)	34
Alcantarillas, cunetas y drenajes	35
Cuneta de vía	37
Drenajes	39
Estudio de Tránsito	41
Diseño de pavimento flexible método AASHTO -93	43
- Confiabilidad(R):	43
- Error estándar (So):	43
- Serviciabilidad:	44

- Módulo resiliente de la subrasante:	.44
- Coeficientes de aportes (a):	.44
- Coeficientes de drenaje (m): Este parámetro tiene en cuenta el clima donde se ubica el proyect y donde se observó un suelo húmedo y clima templado, para el caso de las capas de la estructura de pavimento se tienen los siguientes coeficientes de drenajes; Carpeta asfáltica tiene un coeficiente 1, ya que la capa es impermeable y las otras capas granulares base y subbase tienen un coeficiente 0.9 porque son permeables	de de de
- Módulo Resiliente (Mr):	. 45
Cronograma	.51
Infraworks	.52
CONCLUSIONES	.53
RECOMENDACIONES	.54
BIBLIOGRAFÍA	.55
Índice de Figuras	
Figura 1. Carga Máxima Legales por Eje (Invias, 2004)	. 17
Figura 2. Metodología del Trabajo de Grado	
Figura 3. Localización del Municipio	
Figura 4. Localización del Punto de Estudio	
Figura 5. Registro Fotográfico Afectaciones Actuales	
Figura 6. Determinación del CBR de Diseño	
Figura 8. Rango de Precipitación	
Figura 9. Delimitación de la Cuenca	
Figura 10. Pendientes del terreno.	
Figura 11. Modelo Ráster	.33
Figura 12. Detalle de la cuneta	
Figura 13. Detalle de las variables de la cuneta	
Figura 14. Detalle del filtro.	.41
Figure 16. Detalle de la catructura y espesores	
Figura 16. Detalle de la estructura de pavimento.	.49
Figura 16. Detaile de la estructura de pavimento. Figura 17. Cronograma de Ejecución	.49 .51

Índice de Tablas

Tabla 1. Resultados de la estructura de pavimento por diferentes métodos	20
Tabla 2. Alternativas de solución de la estructura de pavimento	21
Tabla 3. Estructura Económica y de Propiedad de la Tierra Rural de Cundinamarca	24
Tabla 4. Datos obtenidos por Estudios Realizados	27
Tabla 5. Valor de CBR	27
Tabla 6. Valores de CBR Metodología AASHTO	28
Tabla 7. Valores de CBR	28
Tabla 8. Valores Iniciales	29
Tabla 9. Valores de Mejoramiento de Rajón	29
Tabla 10. Valores Mensuales Máximos de Precipitación (mm)	30
Tabla 11. Dimensiones de la Cuenca y Subcuenca	34
Tabla 12. Datos de caudal máximo y año de retorno	35
Tabla 13. Cálculo del caudal	36
Tabla 14. Datos iniciales para el calculó de dimensiones de la alcantarilla	37
Tabla 15. Dimensiones de la alcantarilla y velocidad del flujo	37
Tabla 16. Dimensiones de la cuneta	39
Tabla 17. Calculó del caudal de la cuneta	39
Tabla 18. Ensayos de la piedra filtro	40
Tabla 19. Aforo Vehicular	41
Tabla 20. Composición y Distribución de Vehículos	42
Tabla 21. Calculo Factor de Daño	42
Tabla 22. Datos Iniciales	43
Tabla 23. Tránsito Equivalente Total Acumulado	43
Tabla 24. Coeficiente de Drenaje	45
Tabla 25. Valor del Módulo Resiliente	
Tabla 26. Valores de Diseño por medio del Método AASHTO-93	45
Tabla 27. Resumen de Espesores	48
Tabla 28. Espesores Calculados	48
Tabla 29. Espesores Balanceados	49
Tabla 30. Chequeo Estructural	49
Tabla 31. Presupuesto del proyecto	50

INTRODUCCIÓN

El deterioro de la infraestructura vial, en lo que tiene que ver con las vías de segundo orden a nivel municipal y departamental, resulta ser uno de los problemas que se presentan en nuestro medio y con mayor frecuencia, causados ante la ausencia de una adecuada política de asignación y disponibilidad presupuestal, orientada a la construcción de nuevas obras, así como también, para el mantenimiento rutinario del corredor vial, originando que al momento de necesitarse la intervención de cualquier tipo de obra civil, ellas exigen mayores inversiones, dados sus costos, así como mayores riesgos y tiempo de ejecución, teniendo en cuenta la necesidad de un mayor esfuerzo técnico al momento de realizar la obra, caso de las reparaciones por desgaste, los daños estructurales o del mejoramiento en la subrasante.

La vía secundaria que comunica al municipio de San Juan de Rioseco con Puli, cuenta con una extensión de 26 km, de los cuales, 16 km se encuentran con una estructura de pavimento flexible y los 10 km restantes con una vía tipo terciaria. Debido a que no cuentan con una estructura de pavimento, ni mantenimiento rutinario, la inspección de San Nicolas y 5 veredas más del municipio de San Juan de Rioseco, se encuentran directamente afectadas por problemas originados en el deterioro de la capa de rodadura. Esta es una vía principal utilizada para transporte de personas, animales y alimentos, que no presenta condiciones adecuadas para atender la movilidad de sus habitantes, como una situación que afecta la economía de dichos municipios, además, altos costos en el mantenimiento de vehículos (particulares y públicos), aumento del tiempo de desplazamiento, costos del pasaje y acceso digno a servicios médicos y de educación.

En cuanto al deterioro que presenta la malla se observan problemas relacionados con el material de afirmado que es arrastrado por la escorrentía en tiempos de lluvia, presencia de baches, hundimiento y deterioro de la capa de rodadura, al no contar con obras de drenaje, adicionalmente,

es esta zona se encuentran suelos arcillosos con alta plasticidad, lo cual hace que se presenten mayores deformaciones y un bajo nivel de CBR % (módulo de resiliencia).

El presente documento se determina la adecuada solución a este problema que se está presentando es hacer el mejoramiento de la subrasante por medio del método Ivanov y el diseño de la estructura de pavimento por el método AASHTO 93 (American Association of State Highway and Transportation Officials), y sistemas de drenaje en la red vial del corredor San Juan – Puli desde el PR 9+000 al PR 10+000. De esta manera, se hace una evaluación de las características de los materiales de la subrasante, que se presentan en el área de estudio, así como un análisis del nivel del tránsito y de los costos del proyecto.

PLANTEAMIENTO PROBLEMA

El deterioro progresivo de la carpeta de rodadura en el corredor vial San Juan – Pulí, se presenta como consecuencia del desprendimiento del material de afirmado, factor que aunado a las fuertes lluvias que presentan en la zona han generado baches, hundimientos y ahuellamientos. Adicionalmente, en esta zona, se encuentran suelos arcillosos con alta plasticidad, implicando se presenten mayores deformaciones y con un CBR % menor a 4, situación que en últimas, dificulta el tránsito de vehículos de carga, automóviles y motocicletas, trayendo consigo el aumento del tiempo de desplazamiento y afectaciones a la economía, caso de los daños de los productos agrícolas y los altos costos del transporte; sin dejar de considerar las dificultades de acceso a los servicios de educación y salud que enfrentan los pobladores de la zona.

En consideración a la situación expuesta, el presente proyecto se propone determinar ¿Cómo diseñar la estructura de pavimento flexible para el corredor vía San Juan – Puli desde el PR 9+000 al PR 10+000 Inspección San Nicolás?

OBJETIVOS

Objetivo General

Realizar el diseño de la estructura de pavimento flexible por medio de la metodología AASHTO-93 para el mejoramiento de la red vial del corredor San Juan – Puli desde el PR 9+000 al PR 10+000.

Objetivos Específicos

- Realizar una revisión del estado del conocimiento de los diseños de pavimento flexible en Cundinamarca.
- Identificar las características geomorfológicas de la zona de estudio.
- Evaluar el nivel de tránsito que se presenta en el tramo a intervenir.
- Identificar la alternativa de estructura de pavimento y sistema de drenaje.
- Realizar un presupuesto y cronograma de la ejecución del tramo intervenido.

JUSTIFICACIÓN Y DELIMITACIÓN DEL TRABAJO

El daño que se presenta en el corredor vial San Juan – Puli, ha tenido origen, entre otros factores, por las fuertes lluvias que se registran en el sector, sumado al hecho de corresponder a una vía terciaria, en donde el afirmado se va desagregando de las partículas finas de las gruesas, generando ahuellamiento y baches, ocasionando problemas de movilidad, caso del incremento de viajes, la misma seguridad vial, como también las afectaciones a la economía y condiciones sociales de los pobladores de la zona.

Situación que hace necesario encontrar una alternativa para la solución a la problemática de la red vial y su adecuación, de manera que se atiendan las necesidades de transporte, acorde con la oferta y características de los vehículos que transitan habitualmente en la zona, de manera que se puedan mejorar las condiciones de movilidad, gracias a un mejoramiento de la infraestructura actual. Mejorando los servicios de movilidad.

De acuerdo con lo anterior, en este trabajo se propone el diseño de la estructura de pavimento flexible en el corredor vial San Juan – Puli desde el PR 9+000 al PR 10+000, teniendo en cuenta el tránsito y la subrasante existente, lo cual va a generar impactos significativos en asuntos como la disminución en los tiempos de desplazamiento y en los gastos de mantenimiento de vehículos, así como un mejoramiento de la economía y condiciones sociales de los habitantes de los dos municipios acá propuestos.

MARCO TEÓRICO

El presente trabajo tiene como propósito realizar el diseño de una estructura de pavimento flexible en el corredor vial San Juan- Puli, desde el PR 9+000 al PR 10+000 Inspección San Nicolás por el Método de la AASHTO-93. Es importante poner en evidencia las definiciones, conceptos y teorías, esto con el fin de centralizar en que línea de proyectos se va a enfocar en el presente trabajo de grado.

Estructura de Pavimento

Una estructura de pavimento se puede definir como el conjunto de capas de materiales apropiados, comprendidas entre el nivel superior de las terracerías y la superficie de rodamiento, cuyas funciones principales son la apropiación de una superficie de rodamiento uniforme, de color y textura apropiados resistente a la acción del tránsito, así como la transmisión adecuada de los esfuerzos a las terracerías producidos por el transito (Rico Rodriguez, 2005, pág. 99)

Pavimento Flexible

Según (Asopac, 2004, pág. 6) son los construidos con capas de mezcla asfáltica, en donde la superficie se apoya sobre una o más capas ayudando a soportar las cargas. Estas proporcionan una superficie de rodadura muy confortable para el usuario de la vía.

Obras de Drenaje

Una obra de Drenajes es un mecanismo el cual está diseñado para eliminar el exceso de agua superficial sobre la franja de la vía y restituir la red de drenaje natural, de esta manera se describen los diferentes tipos de sistemas de drenaje que se utilizan y su respectiva variable de diseño:

Bombeo: Es la pendiente transversal en las entretangencias horizontales de una vía, la cual
es planteada durante la etapa del diseño geométrico para direccionar las aguas de las
escorrentías superficiales.

M: porcentaje de bombeo crítico invias m=V/H "2 < m 4% bombeo"

- Peralte: Se caracteriza por ser una inclinación dada al perfil transversal de una carretera, esta es definida durante la etapa del diseño geométrico durante las curvas horizontales para contrarrestar el efecto de la fuerza centrífuga que actúa sobre un vehículo en movimiento.
 E: % de peralte Criticó Invias e= V/H "e ≤ 8% en peraltes de vías principales y secundarias e ≤ 6% en vías terciarias"
- Cunetas: se caracterizan como zanjas, con o sin revestimiento, las cuales son construidas en paralelo a las bermas y están diseñadas para facilitar el drenaje superficial longitudinal en un corredor vial, su geometría varía según las condiciones de la vía y el área de drenaje (INVIAS, 2008)

Tránsito

Según el Instituto Nacional de Vías, 176117 el tránsito es la variable que de manera directa influye en el diseño de pavimento, por esta razón hay que hacer un estudio de volúmenes de tránsito para conocer la composición de los diferentes tipos de vehículos que atraviesan el corredor vial, midiéndose en términos de porcentaje sobre el volumen total según lo estipula la normativa (Instituto Nacional de VÍAS, 2007).

- Tipos de Vehículos: Teniendo en cuenta la gran variedad de vehículos que circulan en el país, se implementó una clasificación en donde reúne datos de pesos y dimensiones. Para el caso de Colombia, el Invias según la resolución 4100 del 28 de diciembre del 2004 del ministerio

de Transporte, ha adoptado una designación del tránsito que circula en el país de la siguiente manera:

Categoría	Tipo			Peso Bruto Máximo (t)	Eje Direccional	Eje del Tracto Camión	Eje del Remolque
C2P	C2P	Camión 2 Ejes Pequeño	•==	8.45	I 2.45	I 6	-
C2G	C2G	Camión 2 Ejes Grande	• •	16	I 6	I 11	-
сз	C3	Camión	4	28	I 6	II 22	-
L3	C2-S1	Tractor – Camión	• •	27	I 6	I 11	I 11
	C4	Camión		36	II 11	II 22	-
C4	C2-S2	Tractor – Camión	- 66	32	Ī	<u>I</u> 11	<u>II</u> 22
	C3-S1	Tractor – Camión		29	Ī	II 22	I 11
C5	C3-S2	Tractor – Camión		48	I 6	II 22	II 22
> C5	C3-S3	Tractor – Camión		52	I 6	II 22	III 24

Figura 1. Carga Máxima Legales por Eje (Invias, 2004)

Método de Diseño de Pavimento (AASHTO-93)

Fue desarrollada en los Estados Unidos para las décadas de los 60, basándose en un ensayo a escala real con una duración de 2 años en el estado de Illinois. El método AASHTO de 1993 para el diseño de estructuras de pavimento flexible, se basa primordialmente en la identificación de un "número estructural (SN)" para el pavimento, el cual hace referencia a la resistencia estructural de un pavimento requerido para una combinación de soporte del suelo (Mr), tránsito total (W18), de la sensibilidad terminal y de las condiciones ambientales. Para dar visualización a como se determinar el número estructural (SN), el método se apoya de la siguiente ecuación:

$$\log W_{18} = Z_r * S_0 + 9.36 Log (SN + 1) - 0.20 + \frac{Log \left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \left(\frac{1094}{(SN + 1)^{5.19}}\right)} + 2.32 Log Mr - 8.07$$

En donde las variables se identifican de la siguiente manera:

- W18: número de aplicaciones de ejes simples equivalentes de (80 kN) hasta el tiempo t en el cual se alcanza ISP = pt
- SN: número estructural
- ΔPSI: diferencia entre los índices de servicio inicial y terminal
- MR: módulo resiliente de la subrasante (libras/pg2)
- So: desviación estándar total de la distribución normal de los errores asociados con las predicciones de tránsito y de comportamiento del pavimento (0.44-0.49)
- ZR: parámetro estadístico asociado con distribuciones normales de datos, que considera la probabilidad de que el índice de servicio del pavimento sea superior a pt durante el periodo de diseño.

Después de determinar el número estructural (SN), se procede a buscar un conjunto de espesores que combinen adecuadamente y teniendo en cuenta los parámetros (coeficiente estructural y drenaje), los cuales garanticen un número estructural (SN) mayor o igual al requerido para soportar las cargas de transido esperadas en el pedido de diseño. Para identificar el número estructural efectivo, se determina mediante la siguiente ecuación:

$$SN = a1 * D1 + a2 * D2 * m2 + a3 * D3 * m3$$

En donde las variables se identifican de la siguiente manera:

- a1, a2, a3: Coeficientes estructurales de la capa asfáltica, base granular y subbase granular (in)
- D1, D2, D3: espesores de la capa asfáltica, base granular y subbase granular (in)
- m2, m3: Coeficiente de drenaje para base granular y subbase granular

METODOLOGÍA

A continuación, se presenta una descripción de la metodología utilizada en el presente trabajo de grado.

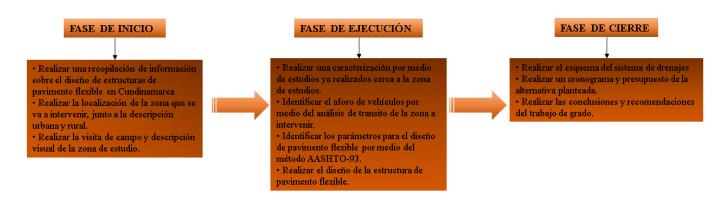


Figura 2. Metodología del Trabajo de Grado

De acuerdo con lo anterior, se realizó una investigación primaria y secundaria con documentos de proyectos de grado relacionados al diseño de una estructura de pavimento, para poder desarrollar la estructura de pavimento flexible en el corredor vial San Juan-Puli, desde el PR 9+000 al PR 10+000 Inspección San Nicolás, por medio de los datos geotécnicos obtenidos en los ensayos de laboratorios, el análisis del nivel de tránsito, realizar el esquema del sistema de drenaje y la determinación de los espesores de los diseños basados en los procedimientos establecidos según el documento de la guía de la AASHTO-93, además, se acompaña esta propuesta técnica con un presupuesto y cronograma que permite conocer el tiempo de ejecución y el respectivo costo del proyecto.

ESTADO DEL CONOCIMIENTO

El estado del conocimiento permite contar con una visión de los proyectos que se han realizado gracias al diseño de estructuras de pavimento flexible en el municipio de Cundinamarca, mediante la consulta de diferentes repositorios universitarios, revisión que permitió identificar diferentes trabajos, como son:

Diseño de la estructura de pavimento en concreto asfáltico de la vía Tabio – Subachoque en el Departamento de Cundinamarca. Universidad Católica de Colombia, 2012.
 En este trabajo se propuso presentar la alternativa más viable, desde un punto de vista técnico y económico, buscando el diseño de una estructura de pavimento de 4.5 km, la cual satisfaga las necesidades del municipio de Subachoque y Tabio en el departamento de Cundinamarca.

En cuanto a la metodología utilizada en este trabajo, ella está orientada a lograr una caracterización geotécnica, el análisis de las condiciones climáticas y del aforo de tránsito. Para ello, se hace uso del diseño propuesto por INVIAS, AASHTO-93, SHELL, Instituto del Asfalto y el método racional para pavimentos (Jiménez Guzmán & Gómez García, 2013). Los resultados obtenidos permiten identificar diversas variables y características que se resumen así:

Método INVIAS	Método AASHTO-93	Método SHELL
MDC-2: 10CM	MDC-2: 16CM	MDC-2: 11CM
BG-2: 30CM	BG-2: 16CM	BG-2: 17CM
SBG-1: 45CM	SGB- 1:20CM	SBG-1: 33CM

Tabla 1. Resultados de la estructura de pavimento por diferentes métodos.

Cabe destacar que este proyecto no presenta recomendaciones relacionadas con la mejor alternativa a utilizar en estos casos, siendo un aspecto para mejorar en futuros proyectos.

Diseño de la estructura de pavimento flexible del segmento vial ubicado en la carrera 72 c entre calle 9a y 10 de la localidad de Kennedy barrio Bavaria en la ciudad de Bogotá Universidad Militar Nueva Granada, 2019.

Este proyecto plantea el diseño de una estructura de pavimento para un segmento vial en Bogotá, evidenciando un alto deterioro de la estructura del pavimento al presentar afectaciones como piel de cocodrilo, huecos, pulimiento de agregados y una alta concentración de parcheo, presentando un índice de severidad por debajo de 2.0, lo que significa que el pavimento alcanzó su etapa de vida útil. De esta manera, se plantea una alternativa que se resumen en: una capa asfáltica de 8 cm, una base granular de 10 cm, una Sub-Base de 10 cm y finalmente una subrasante mejorada con rajón de 30 cm (Velandia Ubaté, 2019)

Diseño de la estructura de pavimento flexible en la vía Lenguazaque-Villapinzón en el departamento de Cundinamarca. Universidad Militar Nueva Granada, 2020.

Este trabajo de grado busca realizar una estructura de pavimento en el Departamento de Cundinamarca por medio de método de la AASHTO-93; para generar una mejor alternativa, se realizan aforos de tránsito, caracterización del suelo por medio de ensayos de laboratorio e información teórica, de esta forma se plantean dos alternativas de diseños.

ALTERNATIVA 1 - 10 AÑOS	ALTERNATIVA 2 - 20 AÑOS
CA: 12 cm	CA: 10 cm
BG:20 cm	BG: 15 cm
SBG:32 cm	SBG: 34 cm
MSR:40 cm	MSR:40 cm

Tabla 2. Alternativas de solución de la estructura de pavimento.

Teniendo en cuenta las dos alternativas, se plantea una recomendación basada en la alternativa 1, ya que, siendo diseño más empleado para pavimentos flexibles, presenta una diferencia económica de \$165.217.026 (Zarate Bulla , 2020), de esta forma la alternativa 1, al presentar mayor espesor, ofrece mayor resistencia según las cargas establecidas.

DESARROLLO DEL CASO DE ESTUDIO

Localización

El municipio de San Juan de Rioseco hace parte del departamento de Cundinamarca, ubicado en la Provincia Magdalena Centro, la cual se encuentra a 17 Km de Bogotá, limita al Norte con el Municipio de Chaguaní; por el Sur con el municipio de Puli y Beltrán; por el Oriente con el Municipio de Quipile y Vianí y por el Occidente con el departamento del Tolima, el cual los separa el Río Magdalena; como se observa en la Figura 3.

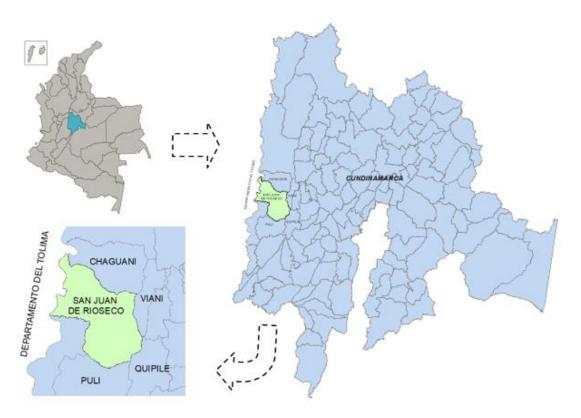


Figura 3. Localización del Municipio

El tramo vial objeto del diseño de una estructura de pavimento se encuentra ubicado en el Pr 9+00 al Pr 10+00 de la vía que conduce desde el casco urbano del municipio de San Juan de Rioseco a la Inspección de San Nicolás. Como se observa en la figura 4.

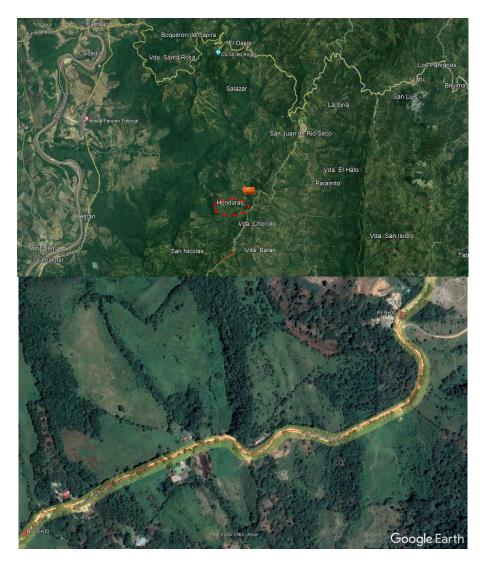


Figura 4. Localización del Punto de Estudio

Según el Censo del DANE del 2005, el municipio de San Juan de Rioseco cuenta con una población de 9463 habitantes, de los cuales el 29,14% de la población es urbana y el 70,86% se encuentra en el sector rural.

Según un estudio de la Secretaría de Planeación de Cundinamarca alrededor de la estructura económica y de propiedad de la tierra rural de Cundinamarca se identificó que el Municipio de San

Juan de Rioseco genera un PIB (Producto Interno Bruto) a nivel municipal de 83.788, lo cual representa un aporte del 24,7% del PIB de la provincia Magdalena Centro., tal como se muestra en la Tabla 3.

MUNICIPIO	PIB MUNICIPAL	% EN PIB DE LA PROVINCIA
Beltrán	21.674	6,39
Bituima	25.360	7,47
Chaguaní	82.441	24,29
Guayabal de Síquima	44.149	13,01
Pulí	46.619	13,74
San Juan de Rioseco	83.788	24,69
Vianí	35.369	10,42
TOTAL	339.400	100

Tabla 3. Estructura Económica y de Propiedad de la Tierra Rural de Cundinamarca

Considerando que el PIB del municipio representa un 24.69% del total de la provincia y considerando que el transporte terrestre es el único medio utilizado para movilizar los diferentes productos, se hace pertinente pensar que este porcentaje puede estar siendo afectado por el mal estado del corredor vial, siendo por ello adecuado pensar que una intervención y mejoramiento de la malla vial impactará favorablemente en la economía de los municipios acá considerados como objeto del estudio.

Visita de campo

Durante la visita realizada a la zona de estudio, se pudo establecer que el corredor vial se encuentra en mal estado, sumado a situaciones como la ausencia de obras de drenaje, de señalización preventiva, trayendo consigo daños en los vehículos y deterioro o pérdida de productos ganaderos y agrícolas. De tal manera, que este cúmulo de situaciones ha venido generando impacto en los índices de accidentalidad, del turismo regional, así como, la afectación de la movilidad de Sanjuaneros y dificultades en la comunicación terrestre con la inspección de

San Nicolás y el municipio de Puli. A continuación, se plantea un registro fotográfico, el cual evidencia el estado de la malla vial:

Figura 5. Registro Fotográfico Afectaciones Actuales

Como se aprecia en el anterior registro fotográfico, en las épocas invernales es cuando se ve más afectado el corredor vial, teniendo en cuenta que, al no contar con una estructura de pavimento flexible, los habitantes de las veredas cercanas intervienen la vía con cualquier tipo de material que ayude a evitar la congestión vehicular y facilitar su flujo, además, al no presentarse una estructura de manejo de aguas superficiales, al encontrarse en ambos costados montaña con cobertura vegetal, quebradas y afluentes, se presentan inundaciones y saturación del suelo, haciendo complejo el tránsito vial.

ANÁLISIS Y RESULTADOS

Estudio Geotécnico

Con ayuda del programa ArcGIS y con planos del IDEAM se identifica que la zona de estudio cuenta con rocas clásticas arenosas y limo arcillosas, también se identifica algunos depósitos de ceniza volcánica, orgánicos, así como intercalaciones de limo arcillosas.

También es propio de la zona los suelos superficiales, bien drenados, con texturas finas a gruesas y presencia de materiales orgánicos, reacción extremada a muy fuertemente ácida, alta saturación de aluminio y fertilidad baja.

Para realizar el estudio Geotécnico, se utilizó información de algunos proyectos de estudios y diseños ya realizados en la zona de intervención por la Arcadia de San Juan de Rioseco Cundinamarca, los cuales se encuentran ubicados en la vía San Juan – Puli en el PR 9+500 y PR 10+000.

Muestra		Limites			Granulometría		Descripción	Clasificación
Muestra	LL%	LP%	IP%	GRAVA%	ARENA%	FINO%	Descripcion	Clasificación
1	26.29	14.68	11.61	21.1	15.45 %	20.1%	arenas de color amarillo oliva	AASHTO (I.G.): A-2-6 (0) U.S.C.S: GC
2	130.90	72.06	58.84	0.0%	0.06 %	99.9%	Limo elástico de color café con vetas de oxidación y extremadamente plástico	AASHTO (I.G.) A-7-5 U.S.C.S.:MH

Tabla 4. Datos obtenidos por Estudios Realizados

Igualmente, se realizaron ensayos de CBR, dando como resultado los valores presentados en la siguiente tabla:

ABSCISA	CBR(%)
K9+000	3
K10+000	7,8

Tabla 5. Valor de CBR

De esta forma se procederá a determinar el CBR de diseño por medio de la metodología AASHTO;

- Ordenar los valores de menor a mayor
- Hallar los CBR mayores o iguales al valor, con relación al total

VALORES DE	No. De	% de
VALORES DE	valores CBR	valores CBR
CBR	≥	≥
3	2	100
7,8	1	50

Tabla 6. Valores de CBR Metodología AASHTO

Seguidamente y con tales datos se procede a graficar el CBR vs el porcentaje (%) de valores, para así, obtener el CBR del diseño, tal como se muestra en la figura 6.

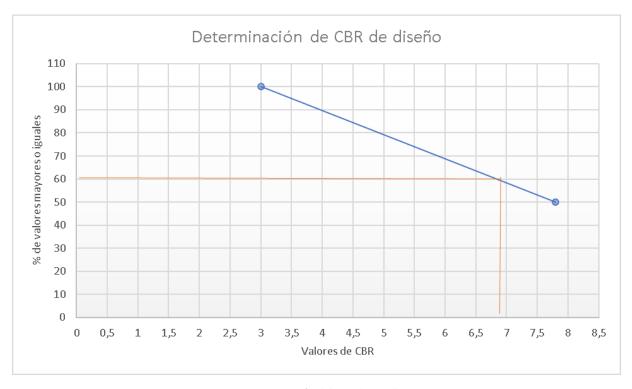


Figura 6. Determinación del CBR de Diseño

Promedio	Desviacion estandar	Coeficiente de varianza	
5,40	3,39	0,63	6,58

Tabla 7. Valores de CBR

Se determina el CBR con un valor de 6.8 el cual fue obtenido por medio de la gráfica, y no por el promedio, ya que, se presenta datos muy dispersos, de igual forma es necesario hacer un mejoramiento de la subrasante con material granular para mejorar sus características, mediante el método de IVANOV.

DATOS INICIALES				
CBR 1	10			
(%)	10			
CBR2 (%)	6.58			
H1(cm)	30			
A(cm)	15.22			

Tabla 8. Valores Iniciales

Resultados obtenidos del mejoramiento con rajón

Datos del mejoramiento				
E1(kg/cm2)	1000			
E2(kg/cm2)	658			
N	1.182			
H1(cm)	43			
A(cm)	15.22			
2a(cm)	30.44			
E1-2 (kg/cm2)	1006.78			
CBR%	10			

Tabla 9. Valores de Mejoramiento de Rajón

A través de los conocimientos adquiridos en la Especialización en Ingeniería de Pavimentos y la experiencia de los ingenieros que realizaron los estudios y diseños; el CBR de mejoramiento del rajón es aproximadamente del 10%, ya que, este tipo de subrasante tiene un índice de plasticidad alto, lo que genera que se presenten daños por ondulación en la carpeta asfáltica,; con este tipo de mejoramiento y por las características mecánicas del rajón se brinda una mayor resistencia a la capa de apoyo.

Estudio Hidrológico

De acuerdo con los registros del IDEAM y con la ayuda de la estación de San Juan de Rioseco en el municipio de San Juan de Rioseco se presenta una precipitación media anual de 1313

mm, teniendo un comportamiento bimodal, de esta manera los meses en los cuales actúa la ola invernal son marzo, abril, mayo, septiembre y octubre de acuerdo con los valores mensuales máximos de precipitación, tal como se muestra a continuación:

	VALORES MENSUALES MÁXIMOS DE PRECIPITACIÓN (mm)												
*****	*****	*****	*****	*****	****	*****	****	****	****	****	****	****	******
AÑO	ENERO	FEBRE	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOST	SEPTI	OCTUB	NOVIE	DICIE	VRANUAL
*****	*****	*****	*****	*****	****	*****	****	****	****	****	****	****	******
1975	46.00	49.00	40.00	30.00	35.00	50.00	10.00	20.00	47.00	32.00	24.00	25.00	50.00
1976	48.00	37.00	30.00	17.00	10.00	1.00	3.00	8.00	55.00	35.00	35.00	17.00	55.00
1977	18.00	31.00	20.00	20.00	25.00	18.00	20.00	30.00	100.00	97.00	25.00	15.00	100.00
1978	13.00	56.00	50.00	25.00	5.00	16.00	11.00	30.00	42.00	33.00	40.00	4.00	56.00
1979	12.00	33.00	60.00	29.00	28.00	30.00	58.00	30.00	60.00	90.00	15.00	26.00	90.00
1980	30.00	35.00	19.00	40.00	35.00	3.00	26.00	22.00	31.00	46.70	24.00	11.50	46.70
1981	42.90	12.00	72.40	25.00	27.00	10.70	48.00	6.30	45.00	28.40	41.20	16.00	72.40
1982	77.00	41.00	72.50	58.00	4.00	7.00	1.00	49.00	30.10	30.00	48.40	20.20	77.00
1983	48.60	33.40	45.00		5.40	6.20	54.60	22.40	54.10	88.00	38.00	7.80	88.00
1984	21.20	21.40	46.30	32.70	32.80	14.10	76.00	58.70	77.10	51.30	39.90	8.70	77.10
1985	10.70	44.00	41.00	59.10	46.30	15.50	10.40	76.10	56.10	24.80	45.00	24.70	76.10
1986	50.20	37.60	24.80	41.00	100.20	2.40	3.80	33.40	58.20	45.00	18.30	18.30	100.20
1987	2.10	21.00	25.20	30.30	4.20	29.10	29.30	70.20	110.30	43.70	28.40	10.30	110.30
1988	30.30	9.40	44.60	14.30	19.20	13.50	27.30	9.50	77.80	130.70	30.20	8.10	130.70
1989	19.10		20.30	43.10	17.40	4.00	30.10	53.70	45.30	54.10	12.10	15.10	54.10
1990	22.60	26.30	22.10	28.40	49.30	10.90	10.70	30.60	38.60	117.20	60.30	20.50	117.20
1991	30.00	40.20	20.30	36.30	18.66	12.30	10.30	22.30	29.20	32.50	19.20	22.60	40.20
1992	32.50	40.90	80.40	12.90	8.90	70.60	9.50	9.60	5.30	68.20	33.20	17.10	80.40
1993	39.40	14.40	38.90	64.70	2.20	9.90	10.10	58.20	48.90	74.60	58.60	29.30	74.60
1994	15.50	62.30	33.10	17.90	22.30	11.10	4.50	36.30	44.10	54.70	1.20	6.20	62.30
1995	59.10	38.50	96.70	53.20	14.40	15.90	19.40	65.20	51.80	35.10	29.30	28.10	96.70
1996	23.50	64.20	86.40	98.30	12.30	9.40	22.40	28.30	48.30	41.30	33.50	36.60	98.30
1997	27.60	25.40	61.50	13.20	14.40	1.80	1.70	44.70	30.10	19.80	18.80	51.80	61.50
1998	18.30	55.90	35.90	66.50	12.30	79.50	16.90	61.60	25.90	44.40	23.50	26.80	79.50
1999	55.30	19.80	43.90	22.60	19.70	2.40	28.70	28.20	47.90	45.10	35.40	7.50	55.30
2000	32.50	35.90	35.80	47.90	13.60	22.10	9.50	31.20	34.20	26.90	23.70	21.10	47.90
2001	15.50	62.50	11.10	31.10	29.90	17.70		31.10	27.10	33.90	32.20	22.50	62.50
2002	25.90	51.10	47.50	8.90	45.20	29.50	6.90	25.20	12.20	16.90	61.30	7.90	61.30
2003	21.40	45.40	43.40	75.40	11.50	9.80	17.90	23.50	32.40	36.20	35.40	9.20	75.40
2004	25.40	21.20	48.50	29.50	13.80	53.00	3.50	93.00	58.30	12.20	31.20	41.50	93.00
2005	27.40	15.10	47.90	35.40	23.20	44.20	11.50	44.40	53.30	28.90	30.70	29.40	53.30
2006	9.30	44.30	36.40	28.80	9.20	12.10	7.00	10.50			37.70	6.40	44.30
2007	3.40	29.40	100.90	38.50	8.20	6.10	26.60	11.50	55.30	16.10	22.80	40.50	100.90
2008	51.40	18.80	42.40	63.10	18.10	11.30	38.90	20.70	49.90	52.50	28.70	35.50	63.10
2009	34.30	39.90	7.20	31.90	5.70	6.90	39.70	13.90	89.90	62.90	33.40	0.40	89.90
2010	28.60	38.30	56.10	72.50	7.50	51.40	9.60	19.70	49.70	58.90	11.80	33.90	72.50
2011	46.90	81.90	42.90	22.30	43.10	16.70	32.30	3.70	100.80	78.60	31.10	26.60	100.80
2012	9.00	60.70	30.30	44.46	55.38	5.50	17.40	10.10	58.10	26.20	21.60	46.70	60.70
P MEDIOS P MAXIMO	29.58 77.00	37.65 81.90	44.23 100.90	38.06	22.46 100.20	19.23 79.50	20.64	32.71 93.00	50.82	48.99	31.03 61.30	20.94 51.80	50.82 130.70
				98.30			76.00		110.30	130.70			
PMINIMOS	2.10	9.40	7.20	8.90	2.20	1.00	1.00	3.70	5.30	12.20	1.20	0.40	40.20

Tabla 10. Valores Mensuales Máximos de Precipitación (mm)

Después de tener los cálculos de las precipitaciones máximas mensuales desde el año 1975 al 2012 se realiza la gráfica de histogramas de precipitación como se puede observar en la siguiente figura:

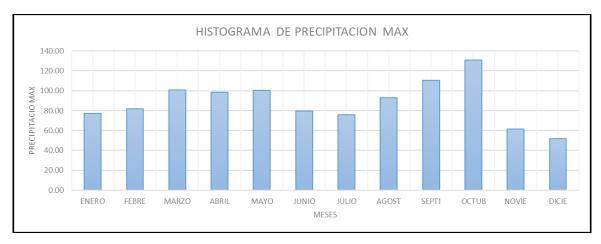


Figura 7. Histograma de Precipitación Máxima en promedio (1975-2012)

De acuerdo con la figura 7, se deduce que los meses con mayores precipitaciones, en un rango de tiempo de 1975 al 2012, siendo octubre la época con la máxima precipitación, para un promedio de 120.00 mm y diciembre como la época más seca del año con 50.00 mm de precipitación, además, se puede identificar que en el municipio de San Juan de Rioseco existe una precipitación total en promedio de 80.00 mm la mayor parte del año, como se evidencia en la siguiente gráfica:

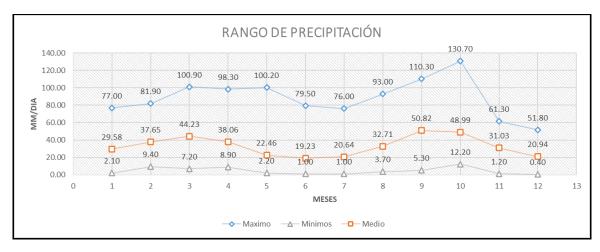


Figura 8. Rango de Precipitación

Delimitación de la Cuenca

En la delimitación de la cuenca se hizo uso de imágenes satelitales de la zona de estudio y de otra parte, con el programa de ArcGIS se realizó la elevación y las curvas de nivel, identificando los puntos más altos, como se muestra en la siguiente figura:

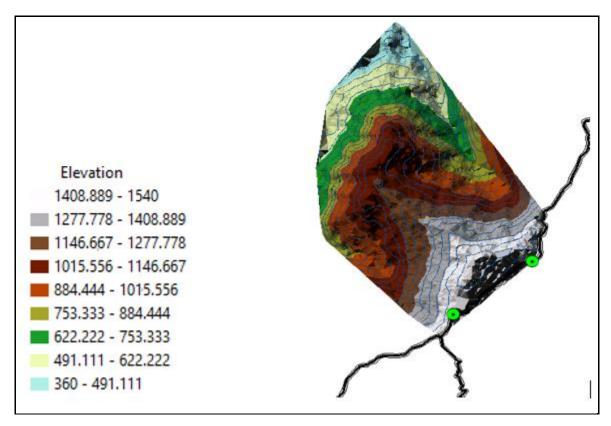


Figura 9. Delimitación de la Cuenca.

En la siguiente imagen se muestra las pendientes que se presentan en la zona de estudio y con las cuales se revisó en qué sentido se dirige el flujo para su respectivo esquema hidráulico, igualmente, se observa que, en el sitio crítico, se tienen pendientes del 5% al 16%, siendo considerado como moderadamente abrupto, de tal forma que la zona es susceptible a los deslizamientos y fenómenos de remoción en masa.

Así mismo, presenta un relieve ligero a fuertemente quebrado con pendientes que van entre 7%-12% y 12%-25%, afectado en sectores por erosión hídrica laminar ligera y frecuente pedregosidad superficial

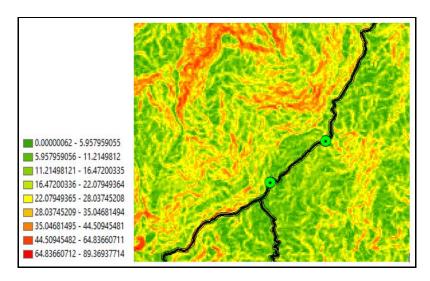


Figura 10. Pendientes del terreno.

Posteriormente, con ayuda del modelo (ráster) se puede visualizar que en la zona donde se realizará el proyecto se encuentran una cuenca y una subcuenca alrededor de la zona de estudio.



Figura 11. Modelo Ráster

De esta manera, se puede realizar el cálculo de la dimensión de área, perímetro y longitud de la respectiva cuenca y subcuenca, las cuales se pueden observar en la siguiente tabla:

Cuenca	Área Ha	Perímetro (m)	Longitud del cauce en (m)	
Cuenca	1220.98	15011.9	5978	
Subcuenca	153	5339	1250	

Tabla 11. Dimensiones de la Cuenca y Subcuenca

Tiempos de Concentración (Tc)

Para las cuencas se tiene que determinar ciertos parámetros morfométricos tales como área, longitud del cauce principal, longitud de las curvas de nivel, pendientes, elevaciones máximas mínimas y el tipo de cobertura de la zona de estudio en tiempos de concentración según la siguiente ecuación:

$$tc = (\frac{11.9L^3}{H})^{0.385}$$

Donde:

Tc= tiempo de concentración en horas

L= Longitud del cauce principal en millas

H=Diferencia de cotas entre el punto más alto y el punto de desagüe de la cuenca en pies

Aplicación del método racional:

El cálculo de caudales se desarrolla mediante el método racional, donde se considera que las fuertes lluvias van a cubrir toda el área de la cuenca y siempre con la misma intensidad, durante el evento se emplea para caudales máximos.

$$Q = \frac{CIA}{360}$$

Q= caudal pico de escorrentía del área aferente de la cuenca estudiada (m3/s) para un periodo de retorno dado.

C= coeficiente de escorrentía en el sitio de estudio, este se determina teniendo en cuenta la visita a campo, donde se identifica la topografía, vegetación y la clase de suelo.

I= Intensidad de la lluvia (mm/hr).

A= el valor del área de la estructura la estructura de drenaje (Ha)

Alcantarillas, cunetas y drenajes

Para determinar el caudal se tienen en cuenta la precipitación máxima obtenía en la subcuenca con ayuda de la precipitación de la estación San Juan de Rioseco, y con la visita de campo se identifica que tipo de cobertura hay (pastizales, bosque y herbazales) como se muestra a continuación:

Precipitación máxima	١	:	123.017
Años			50
tr			0.02
f(x)			0.98
Periodo de	Caud	al	K
retorno	máxir	no	
5	81.5	5	0.800
5 10	81.5 94.5		0.800 0.900
		0	
10	94.5	0 37	0.900

Tabla 12. Datos de caudal máximo y año de retorno.

Después de obtener los datos anteriores y las dimensiones de la cuenca, se procede a calcular el caudal de la cuenca, teniendo en cuenta el parámetro de precipitación máxima por medio

del método de Gumbel; el siguiente parámetro es el número de curva de escurrimiento (CN) con uso de suelo de pastizales, pradera bosques naturales con una condición de infiltración regular.

PMax	Smm	CN	E(mm)	qp (m3/s/km2/mm)	área km2	Caudal (m3/s)
123.01	34.64	88	89.41	0.2	1.530	27.36

Tabla 13. Cálculo del caudal.

Donde:

E: Escorrentía total acumulada

P: Precipitación total del evento

S: Infiltración o retención potenciales máxima, mm

CN: Curva número

Qp= Descarga pico unitaria, (m3/s/km2/mm)

A= área KM2

De acuerdo con las anteriores cifras el caudal de la cuenca es de 27.36 m³/s, donde se encuentra el diseño de la estructura de pavimento, se va a hacer cada 10 m una alcantarilla circular.

descripción	Datos	Fuente:
Caudal	0.55m^3/s	Cuenca
Longitud. Aproximada de alcantarilla	10m	Se asumió
Pendiente de la alcantarilla	2%	Manual de drenaje de INVIAS, numeral 4.4.6.3
área de la alcantarilla	0.182m2	
Radio de la alcantarilla	0.240m	
Diámetro de la alcantarilla	0.481 m	
Diámetro de la alcantarilla	0.726m	Considera control hidráulico a la entrada

Altura de carga (Ho)	0.33m	Gráfica No. 5.10 del libro de drenaje pluvial de Bernardo Diaz
Profundidad crítica (Hc)	0.48m	Gráfica No. 5.17 del libro de drenaje pluvial de Bernardo Diaz
Profundidad de entrada (He/D)	0.90	Gráfica No. 5.3 del libro de drenaje pluvial de Bernardo Diaz
Profundidad de entrada (He)	1.2	Diámetro mayor

Tabla 14. Datos iniciales para el calculó de dimensiones de la alcantarilla.

De acuerdo con la tabla anterior se calculó la velocidad del flujo en la alcantarilla y las dimensiones de la alcantarilla

		Gráfico 5.3				Gráfic 5.10	o No.	
			Control entrada			Contro	ol salida	
	Q (m3/s)	diámetro	He/D	He(m)	Ke	H(m)	hc (m)	hc+D/2 (m)
Circular en concreto prefabricado	0.55	0.73	0.55	0.40	0.50	1.00	0.96	0.84

	He= H	+H1-Li		He determinante (m)	Velocidad de	
Hs	H1	Li	He		salida (m/s)	
0.90	0.84	0.20	1.64	1.64	0.75	

Tabla 15. Dimensiones de la alcantarilla y velocidad del flujo.

Cuneta de vía

En cuanto a la ejecución del proyecto se recomienda emplear una cuneta en L con un ancho de 0.70 m con una profundidad mínima de 0.20m pendiente transversal del 28%.

En lo que tiene que ver con el diseño de la cuneta, es necesario tener en cuenta el cálculo del caudal anterior y compararlo con el caudal permisible, por la sección hidráulica a emplear, utilizando la ecuación de Manning sección llena, la idea de dicha relación es para transportar el caudal proveniente de escorrentía sin poner en riesgo el servicio de la vía.

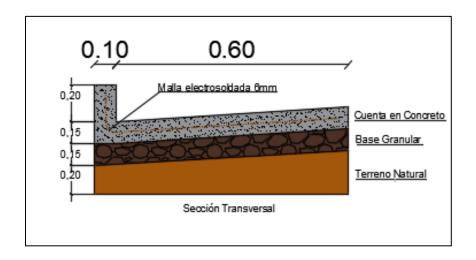


Figura 12. Detalle de la cuneta

$$Q = \frac{1}{n} A R^{\frac{2}{3}} s^{\frac{1}{2}}$$

Q= caudal a tubo lleno en, m^3/s

n=Coeficiente de rugosidad de Manning, adimensional

A= Área de la sección hidráulica, m^2

R= radio hidráulico, m

S= pendiente longitudinal, m/m

En la siguiente tabla se muestran los datos de la sección de la cuneta, para calcular el respectivo caudal que transita por la cuneta y que la sección sea la indicada.

Berma de la cuneta	Datos	Unidad
Z	3.5	
d	0.2	m
A	0.14	m^2
P	1.46	m

T	1.4	m
R	0.10	m
n	0.014	

Tabla 16. Dimensiones de la cuneta.

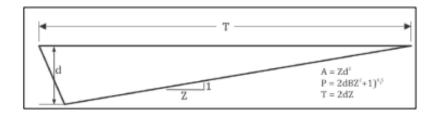


Figura 13. Detalle de las variables de la cuneta

Cuenca	Área (ha)	Long (m)	S%	Tc(min)
Subcuenca	0.107	10	6.00%	15

С	I mm/h	Tipo de sección	Qr m3/s	Qm m3/s	Qr/Qm
0.5	15.73	BC	0.00223	0.5141	0.0044

Tabla 17. Calculó del caudal de la cuneta.

Drenajes

Teniendo en cuenta el estado de la actual vía y la cantidad de agua, tanto superficial como subterránea que hay en la zona de estudio, se hace necesario realizar un drenaje para evitar que el nivel freático del talud arrastre las partículas finas de la estructura de pavimento, y se propone un filtro complementario a las obras superficiales con las siguientes dimensiones:

La altura del filtro es de 1.20m, ya que es necesario que el nivel freático del filtro no pase la cota rasante de la subrasante.

Dado que a altura del filtro resulta ser muy esbelto, se hace necesario que el ancho deba ser proporcional, por lo que se propone sea de 0.60m, siendo esta medida más adecuada para construir y dejarlo protegido con la cuneta.

El material de relleno tiene que ser grava con tamaños comprendidos 3" y ¾", libre de partículas finas, permitiendo el uso de fragmentos de un solo tamaño.

Ensayos de calidad a realizar con la grava:

Ensayo	Norma de ensayo	Criterio
Granulometría	INV E-213	Constituidos por partículas con tamaños comprendidos entre 3" y 3/4", libres de partículas finas.
Desgaste Los Ángeles	INV E-219	≤ 40%
Pérdidas en el ensayo de solidez	INV E-220	Sulfato de sodio ≤ 12% Sulfato de magnesio ≤ 18%
Terrones de arcilla y partículas deleznables	INV E- 211	0.25
Partículas livianas, máximo (%)	INV E-121	1
Contenido de materia orgánica	INV E-121	0

Tabla 18. Ensayos de la piedra filtro.

- Geotextil: NT3000, traslapo mínimo de 0.30m, no se permite que el geotextil quede expuesto, sin cubrir, por un lapso mayor a tres (3) días, la densidad seca deberá ser mínimo del 95% de la densidad seca máxima de Proctor modificado.
- El tipo de puntada podrá ser simple (Tipo 101) o de doble hilo.
- Tubería PVC corrugada de drenaje, perforada de 6"

En el siguiente esquema se muestra el esquema del filtro a utilizar y el tipo de materiales a utilizar:

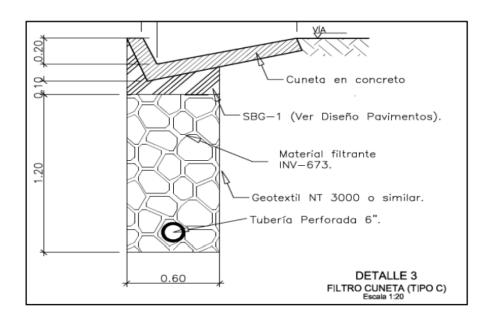


Figura 14. Detalle del filtro.

Estudio de Tránsito

Para realizar el estudio de tránsito, se obtuvieron los datos por medio de la realización de un aforo vehicular en la zona de estudio en un día típico en un horario de las 6:00 am hasta las 6:00 pm, como se puede evidenciar en la siguiente tabla:

	CONTEO DE TRÁFICO							COMPANIE COM			
DISE	PROYECTO: DISEÑO DE UNA ESTRUCTURA DE PAVIMENTO PARA EL CORREDOR VIAL SAN JUAN- PULI, DESDE EL PR 9+000 AL PR 10+000 INSPECION SAN NICOLAS.								N NICOLAS.	Universida Nueva G	AD MILITAR BRANADA
TRAMO:					CORRED	OR VIAL SAN JU	AN -PULI				
	CAMIONETAS Y CAMPEROS BUS C2P C2G C2-S1 C2-S2 C3 C4										
но)RA	SENTIDO SAN JUAN - PULI				0-0					TOTAL
6:00 A.M	7:00 A.M	SAN JUAN -PULI	15	1	1	2	0	0	0	0	19
7:00 A.M	8:00 A.M	SAN JUAN -PULI	17	0	5	1	0	0	0	0	23
8:00 A.M	9:00 A.M	SAN JUAN -PULI	14	0	2	1	0	0	1	0	18
9:00 A.M	10:00 A.M	SAN JUAN -PULI	16	0	4	6	0	0	1	0	27
10:00 A.M	11:00 A.M	SAN JUAN -PULI	18	1	2	2	0	0	0	0	23
11:00 A.M	12:00 A.M	SAN JUAN -PULI	16	0	3	1	0	0	0	0	20
12:00 A.M	1:00 P.M	SAN JUAN -PULI	8	0	1	0	0	0	3	0	12
1:00 P.M	2:00 P.M	SAN JUAN -PULI	13	0	2	3	0	0	0	0	18
2:00 P.M	3:00 P.M	SAN JUAN -PULI	17	1	5	1	0	0	0	0	24
3:00 P.M	4:00 P.M	SAN JUAN -PULI	7	0	2	0	0	0	0	0	9
4:00 P.M	5:00 P.M	SAN JUAN -PULI	9	0	3	4	0	0	0	0	16
5:00 P.M	6:00 P.M	SAN JUAN -PULI	5	1	1	0	0	0	0	0	7
	TOTAL	.ES	155	4	31	21	0	0	5	0	216

Tabla 19. Aforo Vehicular

Posteriormente, al tener la información primaria, se procede a realizar la distribución de los vehículos por su respectiva categoría, como se observa en la siguiente tabla:

VEHICULOS	PORCENTAJE %	NUMERO DE VEHICULOS DIARIOS
AUTOS	71,76%	155
BUSES	1,85%	4
CAMIONES	26,39%	
C2P	54,39%	31
C2G	36,84%	21
C3	8,77%	5
TO	216	

Tabla 20. Composición y Distribución de Vehículos.

Seguidamente se procede a considerar el factor de daño, el cual se calcula en este caso únicamente para el caso de buses y camiones, mediante el método de la cuarta potencia

Tipo	Detalle del vehículo		Tipo	Detalle del v	vehículo
BUS			C2G	0 -	D.
Configuración del eje	SRS	SRD	Configuración del eje	SRS	SRD
Carga (Ton)	3	6	Carga (Ton)	6	10
FEC Método de la cuarta	0,04 0,29		FEC Método de la cuarta potencia	0,68	2,21
FD Método de la cuarta potencia	0,33		FD Método de la cuarta potencia	2,89	
Tipo	Detalle del	vehículo	Tipo	Detalle del vehículo	
C2P			СЗ		
Configuración del eje	SRS	SRD	Configuración del eje	SRS	SRD
Carga (Ton)	2	7	Carga (Ton)	6	20
FEC Método de la cuarta	0,01	0,53	FEC Método de la cuarta potencia	0,68	3,16
FD Método de la cuarta potencia	0,54		FD Método de la cuarta potencia	3,84	

Tabla 21. Calculo Factor de Daño.

Durante la estimación de del tránsito equivalente proyectado, se cuenta con el TPD, las características del segmento, el periodo de diseño y la tasa de crecimiento definida por la secretaría de Movilidad (Steer Davies & Gleave, 2006), de esta forma se continúa con el cálculo de ejes equivalentes diarios, en donde se necesita los siguientes datos iniciales, igualmente los datos del factor daño de cada una de las categorías anteriormente calculados.

DATOS INICIA	LES
TRANSITO DIARIO	216
FACTOR DIRECCIONAL	0,5
TASA DE	1.000/
CRECIMIENTO	1,80%
FACTOR CARRIL	1
PERIODO DE DISEÑO	10

Tabla 22. Datos Iniciales

VEHICULOS	PORCENTAJE %	NUMERO DE VEHICULOS	FACTOR DAÑO	TRANSITO EQUIVALENTE DIARIO
AUTOS	71,8	155		
BUSES	1,9	4	0,33	1
CAMIONES	26,4			
C2P	54,4	31	0,54	8
C2G	36,8	21	2,89	30
C3	8,8	5	3,84	10
TRANSITO EQUIVALENTE DIARIO			49	

TRÁNSITO EQUIVALENTE TOTAL ACUMULADO	531,93

Tabla 23. Tránsito Equivalente Total Acumulado

De esta forma, se da a conocer un Tránsito Equivalente Total (N) para el periodo de diseño que resulta ser de 531.93

Diseño de pavimento flexible método AASHTO -93

Bajo la metodología AASHTO – 93 se realiza el diseño de la estructura de pavimento flexible para el corredor vial San Juan – Puli del PR 9+000 al PR 10+000, teniendo en cuenta los siguientes datos iniciales:

- Confiabilidad(R): De acuerdo con la metodología AASHTO-93, para el parámetro de la confiabilidad se determina que es una arteria principal de la zona rural y se encuentra en un rango de 75%-99%, se determinó el 90%, ya que, es una vía con un tránsito bajito (NT1).
- Error estándar (So): Para este parámetro se asume un valor del 0.46, ya que los materiales pueden cambiar sus características y los cambios de clima pueden afectar el diseño de la estructura de pavimento.

- Serviciabilidad: Para este proyecto se va a diseñar una estructura de pavimento flexible, lo cual la serviciabilidad inicial es de 4.2.
 - La serviciabilidad final depende de la ubicación del proyecto y la importancia del tránsito para este parámetro se asume un valor de 2.3.
- Módulo resiliente de la subrasante: De acuerdo de los ensayos que nos estamos apoyando para el diseño tenemos un CBR 6.58%, para la determinación del módulo resiliente usamos la siguiente correlación:

$$Mr = 2555(CBR\%)^{0.64}$$

$$M_r = 2555(6.58)^{064} = 8532 \, psi$$

- Coeficientes de aportes (a): Este parámetro se toma de acuerdo con el nuevo manual, con las características de las capas del diseño de pavimento:
 - Mezclas asfálticas densas en caliente con un valor de 0.44 AASHTO-93.
 - Bases granulares con un parámetro de 0.14 AASHTO-93.
 - Subbases granulares con un parámetro de 0.11 AASHTO-93.
- Coeficientes de drenaje (m): Este parámetro tiene en cuenta el clima donde se ubica el proyecto y donde se observó un suelo húmedo y clima templado, para el caso de las capas de la estructura de pavimento se tienen los siguientes coeficientes de drenajes; Carpeta asfáltica tiene un coeficiente de 1, ya que la capa es impermeable y las otras capas granulares base y subbase tienen un coeficiente de 0.9 porque son permeables.

CAPA	COEFICIENTES DE DRENAE	UNIDAD
Mezcla asfáltica	1	m1
Base granular	0.9	m2
Subbase	0.9	m3

Tabla 24. Coeficiente de Drenaje

Módulo Resiliente (Mr): De acuerdo con la norma INVIAS 2013 y con el dato del nivel de tránsito NT1 se tiene una base de clase BG-C con un CBR del 80% y subbase de tipo SBG-C con un CBR del 30%, igualmente se considera las plantas que nos suministran los materiales granulares que se encuentran cerca al proyecto, se tienen los siguientes datos:

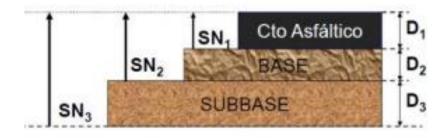
Capa	Valor	Unidad		
Mr1	27890	PSI		
Mr2	15000	PSI		
Mr3	8532	PSI		

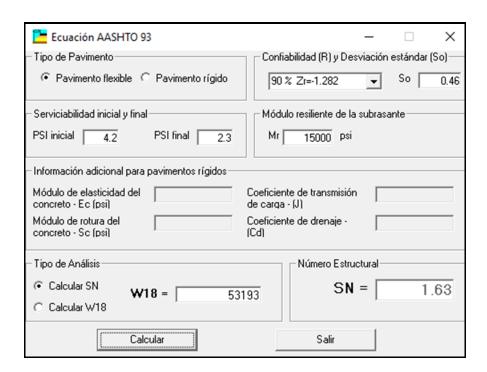
Tabla 25. Valor del Módulo Resiliente

Diseño método AASHTO-93					
Tránsito de	N 8.2 Ton	531.93			
Diseño	Nivel	NT1			
Confiabilidad R 90					
Desviación	Zr	1.282			
estándar So		0.46			
índice de	PSli	4.2			
servicialidad PSlf		2.3			
Capacidad CBR		6.58			
Subrasante PSI 8532					

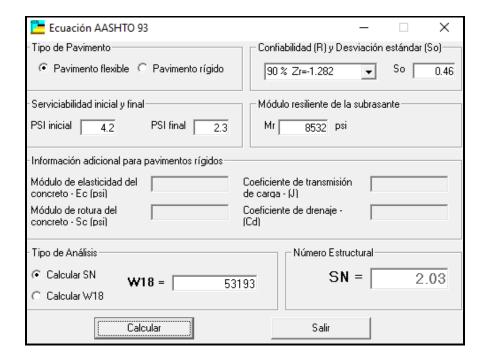
Tabla 26. Valores de Diseño por medio del Método AASHTO-93

De esta forma el diseño de la estructura de pavimento flexible está compuesto de la siguiente manera:




Figura 15. Detalle del cálculo estructural y espesores.

Teniendo todos los valores anteriormente mencionados, se procede realizar el cálculo de los espesores de las capas de la estructura de pavimento flexible, utilizando el programa AASHTO-93, donde se obtiene los números estructurales (SN). Para el cálculo de la capa de rodadura se tiene un (SN) de 1.25 pulg.


A: 3	•
Ecuación AASHTO 93	- □ ×
Tipo de Pavimento	Confiabilidad (R) y Desviación estándar (So)
Pavimento flexible Pavimento rígido	90 % Zr=-1.282 So 0.46
Serviciabilidad inicial y final	Módulo resiliente de la subrasante
PSI inicial 4.2 PSI final 2.3	Mr 27890 psi
Información adicional para pavimentos rígidos	
	eficiente de transmisión carga - (J)
Módulo de rotura del Co concreto - Sc (psi) (Co	eficiente de drenaje - d)
Tipo de Análisis	Número Estructural
Calcular SN W18 = 53193	SN = 1.25
C Calcular W18 = 53193	
Calcular	Salir

.

- El número estructura de la base (SN)= 1.63

- Estructura completa (SN3):2.03

De esta manera, se muestra el resumen del número estructural de cada capa de la estructura de pavimento, la cual se puede observar en la siguiente tabla:

ESPESORES C	CAPAS			
CN1	1 25	Carpeta		
SN1	1.25	asfáltica		
SN2 1.63		Base		
CNO	2.03	Total, de la		
SN3	2.03	estructura		

Tabla 27. Resumen de Espesores

Después tener el resumen de los espesores, se hace el cálculo de los espesores por medio de la siguiente fórmula:

$$D1 \ge \frac{SN1}{a1}$$

$$D2 \ge \frac{SN2 - SN1}{a2m2}$$

$$D3 \ge \frac{SN3 - SN2}{a3m3}$$

Teniendo en cuenta las ecuaciones anteriores se tienen los siguientes espesores de la carpeta asfáltica:

ESPESORES CALCULADOS								
D1 2.84 Pug 7.22 Cm								
D2	3.02	7.66	Cm					
D3 4.04 Pug 10.26 Cm								

Tabla 28. Espesores Calculados

Por medio de los espesores calculados, se realiza el chequeo por balanceo de espesores para determinar el valor real del espesor con valores enteros para facilitar la etapa de construcción.

ESPESORES BALANCEADOS								
D1 10.0 Cm 3.9 Pug								
D2	15.0	Cm	5.9	Pug				
D3	20.0	7.9	Pug					

Tabla 29. Espesores Balanceados

El respectivo análisis se hace comprobando el total del número estructural y chequeando la sumatoria de nuevos espesores, lo cual debe ser mayor o igual al número estructural.

CHEQUEO ESTRUCTURAL				
SN1 1.73				
SN2	0.74			
SN3	0.78			
SN	3.26			

Tabla 30. Chequeo Estructural

Realizando el balance estructural, observamos que el anterior SN3 tiene un valor de 2.03 en la tabla N. 27 y el balance de espesores da mayor 3.26, lo cual cumple.

A continuación, se muestra la siguiente sección donde se da a conocer los espesores de las capas de la estructura de pavimento flexible

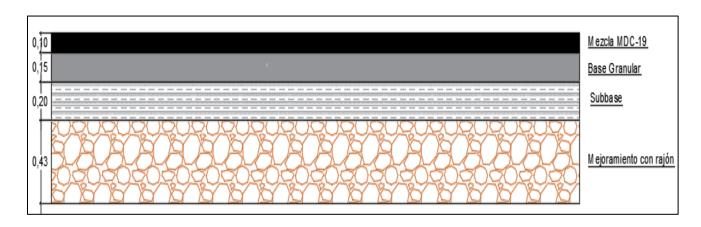


Figura 16. Detalle de la estructura de pavimento.

PRESUPUESTO

Este capítulo describe las actividades que se van a llevar a cabo en el proyecto, el cual describe por separado los capítulos preliminares, la estructura del pavimento, las obras de arte y la señalización con un valor directo de \$ 1,827,296,032, considera un 18% de costos indirectos, más el IVA del 19% sobre la utilidad, con un costo total de \$ 2,170,096,767.60, tal como se muestra a continuación;

Item	Descripción	Unidad	Vr.	Unitario	Cantidad		Vr. Total
1 PRELIMINARES							
1.1	Cerca en tela verde H=2.10M	ML	\$	25,826	100.00	\$	2,582,600
1.2	Campamento 18m2	UN	\$ 2:	2,411,461	1.00	\$	22,411,461
1.3	Localización, trazado y replanteo	M2	\$	12,500	5000.00	\$	62,500,000
1.4	Excavaciones varias sin clasificar (incluye retiro de sobrantes a una distancia menor de 5 km)	M3	\$	23,279	1800.00	\$	41,902,200
1.5	Conformacion de la calzada existente	M2	Ś	956	5000.00	\$	4,780,000
	TOTAL DE PRELIMINARES						
2	ESTRUCTURA I	DEL PAVIMEI	NTO				
2.1	Suministro e instalación de Rajon para mejoramiento de la subrasante	M3	\$	99,630	900.00	\$	89,667,000
2.2	Suministro e instalación de subbase granular	M3	\$	147,651	900.00	\$	132,885,900
2.3	Suministro e instalación de Base granular	M3	\$	159,688	550.00	\$	87,828,400
2.4	Mezcla densa en caliente tipo MDC-19	M3	\$	934,503	500.00	\$	467,251,500
2.5	Riego de imprimación	M2	\$	3,762	5000.00	\$	18,810,000
2.6	Riego de sello	M2	\$	1,296	5000.00	\$	6,480,000
	TOTAL DE ESTRUCTURA DE PAVIMEN	ITO				\$	802,922,800
3	OBRAS	DE ARTE					
3.1	Cuneta en concreto clase D f'c=3000psi(incluye malla electrosoldada de 6mm)	M3	Ś	810,000	270.00	Ś	218,700,000
3.2	Material para filtro (incluye todos los costos de	M3	Ś	,	720.00	Ś	, ,
	suministro, transporte y colocación) Suministro e instalación de geotextil NT 3000		Ş	191,047		Ş	137,553,840
3.3	(estabilización, filtro y separación)	M2	Ś	5,695	3600	\$	20,502,000
3.4	Tubería de drenaje PVC 6"	ML	\$	45,047	1000	\$	45,047,000
3.5	Subbase granular	M3	\$	147,651	180	\$	26,577,180
3.3	Concreto clase D, f'c =3000 PSI (Incluye todos los costos de	IVIS	7	147,031	100	٦	20,377,180
3.6	suministro, transporte y colocacion)	M3	\$	628,195	560.8	\$	352,291,756
3.7	Suministro figurado y armado de acero de refuerzo 60000	KG			1542.7		
	PSI TOTAL DE OPPAS DE ARTE		\$	7,850		\$ \$	12,110,195
4	TOTAL DE OBRAS DE ARTE	IZACIÓN				Þ	812,781,971
4.1	Líneas de demarcación con pintura en frio	ML	\$	4,746	8000.00	\$	37,968,000
	Suministro e instalación de tachas reflectivas	IVIL	٠	4,740	5000.00	۰	37,300,000
4.2	unidireccional	UN	\$	15,947	1000.00	\$	15,947,000
4.3	Señalización vertical tipo 1.	GL	\$ 1	5,000,000	1.00	\$	15,000,000
	TOTAL DE SEÑALIZACIÓN					\$	68,915,000
5 PMT DURANTE LA CONSTRUCCIÓN							
5.1	Plan de Manejo de Trafico	GL	\$	3,500,000	1.00	\$	8,500,000
TOTAL DE OBRAS DE ARTE					\$	8,500,000	
SUBTOTAL COSTO DIRECTO ADMINISTRA CIÓN 100/					\$	1,827,296,032	
ADMINISTRACIÓN 10% IMPREVISTO 4%					\$	182,729,603	
UTILIDAD 4%					\$	73,091,841 73,091,841	
	TOTAL DEL A.I.U				470	\$ \$	328,913,286
	IVA(SOBRE LA UTILIDAD)				19%	\$	13,887,449.84
	TOTAL DEL PROYECTO				13/0	_	13,887,449.84
	TOTALDLLPROTECTO					7 2	,170,030,707.00

Tabla 31. Presupuesto del proyecto.

Cronograma

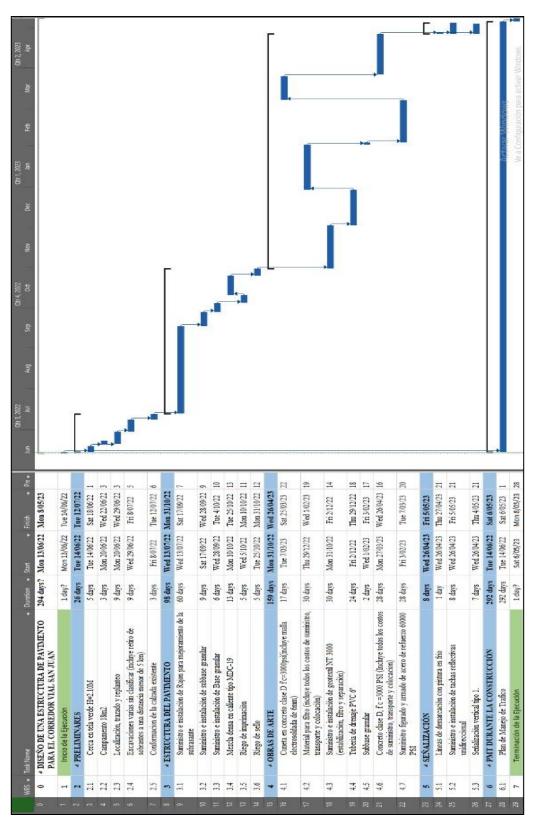


Figura 17. Cronograma de Ejecución

Infraworks

Figura 18. Render

CONCLUSIONES

- ↓ La alternativa de la estructura de pavimento flexible, según la metodología AASHTO-93
 y el balance de espesores da un diseño de conformación de 10 cm de carpeta asfáltica, 15
 cm base, 20 cm subbase y 43 cm de mejoramiento con rajón.
- ♣ De acuerdo con los ensayos suministrados por la Alcaldía de San Juan de Rioseco se tiene en el primer tramo un CBR de 3% con características limo elásticos de color café con vetas de oxidación extremadamente elástico, por este motivo se tiene un mejoramiento con rajón de 43 cm, donde se optimiza la capacidad portante de la subrasante, lo cual redundará en mayor seguridad y menores mantenimientos periódicos.
- ♣ Se hace indispensable la utilización de una capa de sello con riego de imprimación en la base y en la carpeta asfáltica, ya que el transporte que utiliza la vía es NT1, no siendo continuo, por lo tanto, no se encuentra bien sellada la carpeta de rodadura y por ello se utiliza este tipo de sello para mitigar el desprendimiento y desgaste en condición climáticas severas, como también brindar la seguridad de la textura superficial y proveerla de mayor resistencia al deslizamiento
- ♣ En el estudio hidrológico realizado se determina un caudal 0,55m3/s, donde el diseño de la alcantarilla circular da un diámetro de 0.73 m con una velocidad de 0.75 m/s, de manera que se cumpla con la norma. RAS-2000.
- ♣ De acuerdo con el estado de la vía existente y la cantidad de agua superficial como subterránea que hay en la zona de estudio, se debe realizar un filtro de 1.20 m y 0.60m para evitar que el nivel freático del talud arrastre todo el particular finas de la estructura de pavimento.

♣ Teniendo en cuenta todos los estudios y diseños realizados se tiene un costo total del proyecto de \$2,170,096,767.60 y una ejecución de 10 meses.

RECOMENDACIONES

- ♣ Para la continuación de la estructura de pavimento existente con la del nuevo diseño se recomienda en la capa de granulares instalar una geomalla biaxial y hacer un escalonamiento para unir bien las dos estructuras de pavimento, esto con el fin del cambio de rigidez que existe en las dos estructuras para evitar que se presenten fisuras en la parte de la carpeta asfáltica.
- ♣ Se recomienda hacer ensayos de caracterización mensual y semanal de la base, subbase, los materiales de la mezcla asfáltica y de concreto para tener un control de calidad en la obra. Para el caso de los ensayos de piedra filtro se debe hacer de manera mensual; si no se cambia de planta, se recomienda revisar el certificado de calidad de los demás materiales a utilizar.
- ♣ A la hora de tomar densidades en campo en la capa de base y subbase no se aceptará que sea menor del 98% y no se libera para la continuidad de las demás capas, y para la toma de la densidad en campo de la base donde se apoya la cuneta mínima del 95%.
- ♣ Para el suministro de los materiales pétreos se recomienda verificar los permisos ambientales y mineros de las plantas.

BIBLIOGRAFÍA

- ARBOLEDA PAVA, E. E. (2015). ESTUDIO COMPARATIVO DE LAS NORMAS TÉCNICAS PARA LA CONSTRUCCIÓN DE PAVIMENTOS FLEXIBLES EN COLOMBIA Y BRASIL. Obtenido de https://repository.unilibre.edu.co/bitstream/handle/10901/17107/ESTUDIO%20COMPARATIVO. pdf?sequence=1&isAllowed=y
- Asopac. (2004). Cartilla de Pavimento Asfáltico.
- Instituto Nacional de VÍAS . (2007). *Manual de diseño de pavimento asfálticos para vías con bajos volúmenes de tránsito* . Bogotá : Ministerio de Transporte .
- INVIAS. (2008). Manual de diseño geométrico de carreteras. Bogotá D.C.: Ministerio de Transporte.
- Jiménez Guzmán, P. A., & Gómez García, R. E. (2013). Diseño de la estructura de pavimento en concreto asfáltico de la vía Tabio Subachoque en el departamento de Cundinamarca. Bogotá: Repositorio Universidad Catolica.
- Rico Rodriguez, A. (2005). La ingenieria de suelos en las vias terciarias. Mexico: Limusa.
- Steer Davies & Gleave. (2006). Formulacion del Plan Maestro de Movilidad y Reformulación del Plan Vial y de Transporte del POT y DAPD. Bogota D.C.
- Valandia Ubate , A. A. (2019). Diseño de la estructura de pavimento flexible del segmento vial ubicado en la carrera 72 c entre calle 9a y 10 de la localidad de Kennedy barrio Bavaria en la ciudad de Bogotá. Bogotá: Repositorio Universidad Militar Nueva Granada.
- Zarate Bulla , D. F. (2020). *DISEÑO DE LA ESTRUCTURA DE PAVIMENTO FLEXIBLE EN LA VÍA*LENGUAZAQUE VILLAPINZÓN EN EL DEPARTAMENTO DE CUNDINAMARCA. BOGOTÁ D.C.:

 Repositorio Univerversidad Militar.