DIMENSIONAMIENTO DE UNA RED ELECTRICA DOMICILIARIA RESPETUOSA CON EL MEDIO AMBIENTE

Leslie Yesseth Espinosa González

UNIVERSIDAD MILITAR NUEVA GRANADA
INGENIERIA
MECATRÓNICA
BOGOTÁ D.C
2014
DIMENSIONAMIENTO DE UNA RED ELÉCTRICA DOMICILIARIA RESPETUOSA CON EL MEDIO AMBIENTE

Leslie Yesseth Espinosa González

Tesis

Ing. Leonardo Enrique Solaque Guzmán, PhD.

UNIVERSIDAD MILITAR NUEVA GRANADA
INGENIERÍA
MECATRÓNICA
BOGOTÁ D.C
2014
Nota de aceptación:

Firma del presidente del jurado

Firma del jurado

Firma del jurado

Bogotá 17 de Julio del 2015
DEDICATORIA

A:

Dios, por fortalecer mi corazón e iluminar mi mente, para sacar adelante mis estudios.

Mi madre María Shirley González, que me apoyo en todo momento y estuvo con migo a cada instante de este proceso de formación, porque es gracias a ella que estoy donde estoy.

A todas las personas que estuvieron con migo para brindarme apoyo y fortaleza en determinados momentos de mi carrera.
Tabla de contenido

1. INTRODUCCION...10
2. OBJETIVOS..11
 2.1 General...11
 2.2 Específicos ...11
3. IDENTIFICACION DEL PROBLEMA..12
4. JUSTIFICACION ...14
5. ANTECEDENTES ..15
6. REVISION DOCUMENTAL ..18
 6.1 Energías alternativas..18
 6.2 Energía solar Fotovoltaica (ESF) ...18
 6.3 Principio de funcionamiento del efecto solar fotovoltaico ...18
 6.4 Funcionamiento de una celda solar fotovoltaica ..20
 6.4.1 Tipo de celdas solares fotovoltaicas ..22
 6.5 Interconexiones de los módulos solares fotovoltaicos ..23
 6.6 Baterías de los sistemas solares fotovoltaicos ..24
 6.6.1 Inconvenientes con las baterías ..24
 6.6.2 Criterios para la selección de la batería ...25
 6.7.1 ¿Cómo trabaja un regulador de carga? ...26
 6.7.2 ¿Qué tipos de reguladores hay para el uso de sistemas fotovoltaicos?27
 6.8 Inversor o convertidos cc/ca ..27
 6.9 Tecnología Smart Grid ..29
 6.9.1 Atributos que debe tener la tecnóloga Smart Grid ...29
 6.9.2 Diferencias entre una red SG (Smart Grid) y una de uso Convencional30
6.10 Ventajas y desventajas de un sistema solar fotovoltaico ...31
 6.10.1 Ventajas ..31
 6.10.2 Desventajas ...33
7. ALTERNATIVAS DE SOLUCIÓN

7.2 Sistemas no conectados a la red

7.2 Sistemas conectados a la red

7.3 Sistema híbrido de sistemas fotovoltaicos

8. DIMENSIONAMIENTO

8.1 Análisis de Cargas

8.2 Selección del inversor

8.3 Radiación solar mensual

8.4 Selección del módulo fotovoltaico

8.5 Dimensionamiento del banco de baterías

8.5.1 Autonomía requerida

8.7 Soportaría para la instalación del Sistema Solar Fotovoltaico

8.9 Mantenimiento de los componentes de un sistema fotovoltaico

8.9.1 Paneles

8.9.2 Inversor

8.9.3 Baterías

8.10. ANALISIS DE COSTOS

9. CONCLUSIONES
LISTA DE TABLAS

Tabla 1. Emisiones estimadas de Contaminantes a partir de los Consumos de combustible para el año 2002. ..12
Tabla 2. Nivel de radiación Solar en los lugares más cálidos. Tabla tomada del Atlas de Radiación Solar en Colombia...16
Tabla 3. Tabla de consumo de cargas en la casa ejemplo ..43
Tabla 4. Características del recurso solar en Bogotá según la serie mensual del IDEAM [19]............47
Tabla 5. Tabla de las características de los paneles solares FV. Imagen tomada de:
http://www.idelect.net/documentos/kyocera-kd-f-series-family.pdf [20]..49
Tabla 6. Tabla de costos para la instalación de un sistema solar fotovoltaico en hogares Colombianos59
LISTA DE ILUSTRACIONES

Ilustración 1. Semiconductor tipo n. Imagen tomada de: Energía solar fotovoltaica (Germán López)...19
Ilustración 2. Semiconductor tipo p. Imagen tomada de Energía Solar Fotovoltaica (Germán López)...20
Ilustración 3. Funcionamiento de una celda Fotovoltaica. Imagen tomada de Energía Solar Fotovoltaica (German López) ...20
Ilustración 4. Esquema de una celda Fotovoltaica. Imagen tomada de Energía Solar Fotovoltaica (Germán López) ...21
Ilustración 5. Modulo fotovoltaica. Imagen tomada de: Seminarios PV in Bloom. Introducción a los SFCR.pdf ...21
Ilustración 8. Sistema de distribución de la energía. Imagen tomada de Smart Grid Integrating Renewable ..31
Ilustración 9: Sistema no conectado a la red. Imagen tomada de: http://www.solener.com/esquema1.jpg ...34
Ilustración 11: Sistema Conectado a la red. Imagen tomada de: Configuración típica de un sistema fotovoltaico conectado a la red, Imagen tomada de: http://www siti solar.com/wp-content/uploads/2014/01/definitivo-bueno-de-verdad.png ...36
Ilustración 12: Sistema Conectado a la red. Imagen tomada de: http://www2.eve.es/web/App_Themes ...37
Ilustración 17. Capacidad instalada para generación eléctrica en Colombia por fuente de energía 2012. Imagen tomada de [24]..57
LISTA DE ANEXOS

Anexo 1...63
Anexo 2...65
Anexo 3...73
1. INTRODUCCION

En este trabajo de grado se pretende realizar una investigación sobre el uso racional de energías no convencionales, haciendo un énfasis en la energía solar fotovoltaica instalada en hogares, donde esta tecnología convierte la luz del Sol directamente en electricidad para abastecer a los electrodomésticos domiciliarios.

Las principales características de este tipo de tecnología se deben a que proviene de una fuente inagotable, no contaminante, y reduce la dependencia energética, lo que hace que diseños de ingeniería que involucren esta técnica sean bastantes tentadores para su implementación. Las causas por lo que esta energía no es muy utilizada actualmente en Colombia radican en que los costos son elevados y el tiempo de recuperación es demorado con respecto al uso de fuentes habituales.

Con el avance tecnológico e industrial se ha evidenciado que la generación de electricidad con fuentes de energía convencionales, está produciendo contaminación ambiental y desgaste de los combustibles fósiles. Por lo tanto surge la necesidad de pensar en una solución amigable con el medio ambiente y rentable para la obtención de electricidad, es por esto que se integra este tipo de energía alternativa con las ventajas de la tecnología Smart Grid o Redes Inteligentes, la cual proporciona a los usuarios beneficios tales como: electricidad garantizada, electricidad confiable y segura, flexibilidad en el dimensionamiento del sistema fotovoltaico, energía independiente, beneficios ambientales, venta del exceso de electricidad, rentabilidad económica y aprovechamiento de recursos naturales gratuitos e inagotables, haciéndola una de las opciones más viables para aportar beneficios al cuidado ambiental y para ser inversionistas en estas nuevas tecnologías.

El documento cuenta con 8 capítulos significativos para el desarrollo de la investigación, pero tendrá un énfasis en 3 de estos, los cuales buscan explicar el funcionamiento de cada uno de los componentes de los sistemas fotovoltaicos, las arquitecturas disponibles de los mismos y el dimensionamiento para la instalación de estos en hogares, el cual se incluye la comparación costo beneficio de esta nueva tendencia.
2. OBJETIVOS

2.1 General

Dimensionar una red eléctrica domiciliaria respetuosa con el medio ambiente, confiable y segura para la generación y venta de energía eléctrica a la red en la ciudad de Bogotá.

2.2 Específicos

Analizar el funcionamiento de un sistema solar fotovoltaico para evidenciar que tan factible es la energía solar como recurso energético en Colombia.

Proponer una aproximación a una red domiciliaria que sustituya parte de la electricidad de un hogar, que sea amigable con el medio ambiente y que tenga tecnología Smart-Grid.

Dimensionar las particularidades técnicas, reglamentarias y económicas que llevan a cabo un diseño e implementación de un sistema fotovoltaico en hogares.

Presentar una solución que le de uso racional a la energía y que presente el estado de retorno económico a los beneficiarios de los sistemas fotovoltaicos.
3. IDENTIFICACION DEL PROBLEMA

La identificación del problema se basa en encontrar la necesidad que se presenta en un proceso o actividad específica, este análisis se realiza mediante una serie de actividades que permiten contemplar los parámetros importantes para dar una solución. Se ha observado que con el paso de los años la contaminación ambiental ha aumentado considerablemente generando un desgaste en la capa de ozono, y gran variedad de dificultades para el bienestar de los seres vivos, esto se debe a que la mayoría de los procesos energéticos se realizan con el uso de combustibles fósiles que no son recuperables, son altamente contaminantes y se están agotando progresivamente.

El consumo de combustibles fósiles es la principal causa de la contaminación del aire en las ciudades, de acuerdo con la tabla 1, se observan las 8 ciudades que representar el 41% de contaminación en el país. El origen de estas diferencias está en los tipos de combustibles fósiles usados por el transporte y la industria. Para el 2002, la gasolina representó el 62% de la energía consumida por el sector transporte y el Diésel el 37%. Para el mismo año, el 14% de la energía del sector industrial provino del Carbón, 33% del Gas, 18% del diésel y el 7% del Fuel Oil.

TABLA 1

<table>
<thead>
<tr>
<th>CIUDAD</th>
<th>PST</th>
<th>PM$_{10}$</th>
<th>SO$_x$</th>
<th>NO$_x$</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOGOTA</td>
<td>5,94</td>
<td>4,41</td>
<td>13,76</td>
<td>29,66</td>
<td>145,20</td>
</tr>
<tr>
<td>MEDELLÍN</td>
<td>4,52</td>
<td>3,11</td>
<td>8,85</td>
<td>16,34</td>
<td>94,56</td>
</tr>
<tr>
<td>CALI</td>
<td>6,91</td>
<td>4,44</td>
<td>12,81</td>
<td>17,91</td>
<td>84,77</td>
</tr>
<tr>
<td>BARRANQUILLA</td>
<td>1,67</td>
<td>1,66</td>
<td>1,41</td>
<td>17,23</td>
<td>31,52</td>
</tr>
<tr>
<td>V. SOGAMOSO</td>
<td>4,51</td>
<td>2,61</td>
<td>8,10</td>
<td>5,79</td>
<td>21,99</td>
</tr>
<tr>
<td>BUCARAMANGA</td>
<td>0,56</td>
<td>0,55</td>
<td>2,64</td>
<td>4,97</td>
<td>23,70</td>
</tr>
<tr>
<td>CARTAGENA</td>
<td>0,45</td>
<td>0,45</td>
<td>0,73</td>
<td>4,61</td>
<td>22,88</td>
</tr>
<tr>
<td>PEREIRA</td>
<td>0,37</td>
<td>0,32</td>
<td>0,73</td>
<td>2,91</td>
<td>19,50</td>
</tr>
<tr>
<td>TOTAL CIUDADES</td>
<td>24,93</td>
<td>17,55</td>
<td>49,03</td>
<td>99,41</td>
<td>444,12</td>
</tr>
<tr>
<td>RESTO DEL PAIS</td>
<td>24,27</td>
<td>17,88</td>
<td>56,11</td>
<td>134,97</td>
<td>667,81</td>
</tr>
<tr>
<td>TOTAL NACIONAL</td>
<td>49,21</td>
<td>35,43</td>
<td>105,14</td>
<td>234,38</td>
<td>1,111,93</td>
</tr>
</tbody>
</table>

Tabla 1. Emisiones estimadas de Contaminantes a partir de los Consumos de combustible para el año 2002.
Como se observa en la tabla anterior Bogotá es la ciudad que genera más contaminación ambiental con el uso de Combustibles fósiles. [1]

El análisis ambiental del país (AAP) realizado en el 2006, por el banco Mundial, con el apoyo del Gobierno de Colombia, demostraron que la contaminación atmosférica afecta gravemente la calidad de vida de la población; aumentando el número de muertes prematuras, atribuidas a enfermedades respiratorias agudas y cardiovasculares, el AAP informa, que anualmente mueren cerca de 6.000 personas por la contaminación ambiental; además, se generan 255.000 consultas hospitalarias de urgencias y externas.[2]

En la actualidad el carbón, el petróleo y el gas natural son las fuentes que, en su combustión, suministran alrededor del 88% de la energía consumida por el mundo para satisfacer los requerimientos de una sociedad en pro de un mejor nivel de vida, como ya se mencionó anteriormente estos combustibles fósiles tarde o temprano se agotarán dando cabida a nuevas posibilidades con el uso de otras formas de energía (energía nuclear, energía solar, biomasa ,etc.), como una solución al desarrollo sostenible de la humanidad. El carbón es el más abundante y a su vez el más contaminante de los combustibles fósiles. Desde comienzos del siglo XVIII, ha sido clave en el desarrollo industrial: ha servido, no solo para la cocción de alimentos, sino que ha movido máquinas a vapor, ha alimentado diferentes sectores manufactureros y participa en la generación de Electricidad. [3]

Por estas razones se plantea la siguiente investigación, que pretende contemplar los parámetros necesarios para la implementación de sistemas solares fotovoltaicos en hogares y dar solución a un porcentaje de este problema ambiental, para que los ciudadanos tengan un mejor nivel de vida y no se vean expuestos a esta problemática social y ambiental.
4. JUSTIFICACION

En la actualidad el sector energético en Colombia está dominado principalmente por la generación de energía hidráulica con el 64 % de producción y con un 33 % de generación térmica, esto se debe a que es un país que cuenta con uno de los más grandes recursos hídricos en el mundo, por tanto el desarrollo de esta tecnología no genera costos demasiados altos para su aprovechamiento; pero desafortunadamente los grandes inversionistas han impuesto una cultura de avance industrial donde solo le han dado relevancia a los beneficios económicos que puedan obtener de la explotación de fuente biológica, y no se han enfocado en el cuidado del medio ambiente, razón por la cual actualmente la sociedad está atravesando una situación crítica, que la ha llevado a pensar que no solo se debe limitar al ahorro socioeconómico sino que también se debe avanzar tecnológicamente en pro de la conservación de los recursos naturales, considerando esos factores, Colombia ha comenzado a investigar sobre el uso racional de la energía con ayuda de fuentes no convencionales, primordialmente eólica, solar y biomasa, teniendo en cuenta que Colombia tiene un potencial climático óptimo para el aprovechamiento de estos beneficios.

Debido al aumento de la contaminación en el globo terráqueo por el uso de combustibles fósiles no renovables (petróleo, carbón y gas) que ayudan al proceso de generación de electricidad, se ve la necesidad de implementar una estrategia que satisfaga los requerimientos energéticos de la población y que sea respetuosa con el medio ambiente en la producción de la electricidad en hogares, para lo cual se propone la idea de implementar un sistema solar fotovoltaico con la integración de tecnología Smart grid que le permita a los usuarios tener el control de la energía, cuidar al medio ambiente, obtener ahorro económico, aprovechar racionalmente la energía solar, y administrar eficientemente la energía obtenida en sus respectivos hogares, al consumir y producir energía al mismo tiempo, así los recursos naturales serán direccionados correctamente asegurando grandes beneficios socioeconómicos y culturales en la vida de las personas y de cada uno de los seres vivos, razón por la cual este estudio tiene como objetivo proponer y caracterizar un nuevo sistema de fuente energética, orientado a la aplicación residencial.
5. ANTECEDENTES

El desarrollo y la implementación de los sistemas que funcionan con energías renovables o energías limpias se han visto necesarios con el paso del tiempo, buscando nuevas alternativas para un apropiado aprovechamiento de dichas energías.

La energía solar aprovechada por medio de módulos fotovoltaicos en Colombia comenzó a finales de los años 70 en el sector de las telecomunicaciones, con la asistencia de la Universidad Nacional, este proyecto fue dirigido al sector rural donde la generación solar resultaba más económica mientras que los costos por los precios de los combustibles, de operación y mantenimiento en las zonas remotas no tenían punto de comparación. En este programa comenzaron con pequeños sistemas de generación con 60 Wp, teniendo para mediados de 1983, 2950 sistemas instalados, y con el tiempo el programa creció considerablemente e implemento sistemas de 3 y 4 KWp para las antenas satelitales terrestres, que en la actualidad emplean sistemas solares en repetidoras de microondas, boyas, estaciones remotas, bases militares, entre otras aplicaciones.

Para los proyectos relacionados con la electrificación rural, el sistema para hogares aislados cuenta con el uso de un panel solar de 50 a 70 Wp, una batería entre 60 y 120 A y un regulador de carga. Estos sistemas brindan energía para iluminación, radio, y TV.

En estos últimos años se han instalado programas de electrificación rural, con fuerte financiación del estado, con los recursos de FAZNI (Fondo de apoyo Financiero para la Energización de las zonas No interconectadas). El IPSE (Instituto para la promoción de Soluciones Energéticas) es en la actualidad la institución que lidera las acciones del Estado en la energización del campo colombiano. [4]

Según las investigaciones se argumenta que los sistemas colombianos no son tan eficientes y comerciales a los desarrollados en otras naciones por lo que no tienen un nivel competitivo frete a los productos extranjeros, sin embargo se sigue investigando sobre la aplicación de estos sistemas con el análisis de energía solar en el país con la ayuda del Atlas de Radiación Solar De Colombia [5].
Del Atlas de radiación solar se obtuvo la siguiente tabla, en la cual se observan los lugares Colombianos con más radiación solar y la cantidad de KWh/m2 que el Sol sumistra a estos lugares, lo que permite discernir sobre lugares óptimos para el uso de energía solar fotovoltaica.

TABLA 2

<table>
<thead>
<tr>
<th>REGIÓN</th>
<th>kWh/m²/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUAJIRA</td>
<td>2.190</td>
</tr>
<tr>
<td>COSTA ATLÁNTICA</td>
<td>1.825</td>
</tr>
<tr>
<td>ORINOQUIA</td>
<td>1.643</td>
</tr>
<tr>
<td>AMAZONIA</td>
<td>1.551</td>
</tr>
<tr>
<td>ANDINA</td>
<td>1.643</td>
</tr>
<tr>
<td>COSTA PACÍFICA</td>
<td>1.278</td>
</tr>
</tbody>
</table>

Dentro de los 20 últimos años el Departamento de Física de la Universidad Nacional se ha encargado de la investigación en energía renovables con las Celdas Solares y Sistemas Interconectados a la Red, por lo que la participación de los estudiantes es de gran importancia para la universidad, teniendo en cuenta que ellos hacen parte de los grupos investigativos, graduados en maestría y en el programa de doctorado. [6]

En Colombia existen varios distribuidores de paneles al detall que distribuyen generalmente a viviendas e islas en donde no ha llegado aún la red de interconexión eléctrica. Las empresas colombianas importadoras de módulos fotovoltaicos, que distribuyen son ENERSSIN, SOLAR CENTER, EDUAROÑO, DURESPO S.A, ENERGIA INTEGRAL ANDINA entre otros.

En Colombia el sistema fotovoltaico residencial está conformado por uno o más módulos, un regulador, una batería que en su mayoría es de tipo automotriz, interruptores, tomacorrientes y los consumidores, que generalmente son lámparas, televisores, radios, teléfonos, lavadoras etc.

Algunas aplicaciones que se han realizado en Colombia a mediados del 90 son: Muleras en los campos de producción, Escuelas rurales en el Meta y Caquetá, 50 hogares de grupos comunitarios en el Valle del Cauca, Guardabosques en el Cauca, 27 escuelas en el municipio de Conson.
Otro tipo de aplicaciones en Colombia están dirigidas a sistemas de protección catódica de oleoductos, radio ayudas y señalización marítima con faros y boyas, estos sistemas son utilizados en las empresas de ECOPETROL e INTERCOR las cuales utilizan los paneles fotovoltaicos para protección catódica y para alimentar los radiofaros en el Cabo de la vela y Puerto Bolívar, y para alimentar el sistema de control de flujo de camiones dentro de la mina y seguridad en la vía del ferrocarril. [7]

Tener información sobre los antecedentes da una perspectiva mucho más amplia de cómo está el entorno donde se tiene pensado realizar la investigación, por lo tanto estos antecedentes son de gran importancia para el desarrollo de este proyecto.
6. REVISION DOCUMENTAL

La revisión documental se realiza con el fin de obtener los conceptos necesarios para entender el funcionamiento de cada uno de los elementos que componen un sistema solar fotovoltaico y así proceder a un correcto diseño e implementación del mismo.

6.1 Energías alternativas

Las energías alternativas o renovables son todas aquellas que se obtienen de los recursos naturales inagotables, como los son, el sol, el agua, el viento, la vegetación. Colombia particularmente produce energía proveniente de la hidroelectricidad y de los combustibles fósiles (petróleo, gas y carbón), cuyas reservas ya se están agotando. [8]

6.2 Energía solar Fotovoltaica (ESF)

Es la fuente primaria de la luz y calor en la tierra, considerada como fuente de energía renovable, se usa como fuente la radiación solar que llega a la Tierra, es una energía gratuita, no genera emisiones y es silenciosa. Además es una de las pocas tecnologías renovables que pueden ser integradas al paisaje urbano [8].

6.3 Principio de funcionamiento del efecto solar fotovoltaico

El efecto fotovoltaico es un fenómeno físico que permite la conversión directa de la radiación electro magnética en corriente eléctrica por medio de una celda o célula fotovoltaica, produciendo la conocida energía fotovoltaica.

Este fenómeno se produce por medio de los materiales semiconductores, debido a su estructura electrónica, que para el caso de las celdas fotovoltaicas es implementado el silicio (Si), el cual tiene cuatro electrones de valencia preparados para formar enlace covalente con otros átomos y compartir sus electrones. Se tienen dos tipos de semiconductores:

Semiconductor tipo n o negativo: El proceso efectuado para formar este tipo de semiconductores se hace sumergiendo un cristal de silicio en una atmosfera de fosforo (P), a ciertas condiciones de presión y temperatura, el fósforo se difunde por el cristal ocupando posiciones en la red cristalina y estableciendo enlaces con los átomos de silicio de su alrededor. Sin embargo hay que saber que el fosforo cuenta con cinco electrones para formar enlace con
otros átomos, pero el silicio solo cuenta con cuatro, de manera que cuando ocupa un lugar en la red cristalina de silicio el quinto electrón del fosforo quedara solo y poco ligado, lo que significa que está en niveles energéticos altos o niveles donadores. Al estar sometido a la radiación solar esta le aporta la suficiente energía para que este electrón poco ligado se desprenda y ocupe un lugar en un nivel energético superior, saltando a la banda de conducción y moviéndose libremente por el material. Este comportamiento se puede observar en la ilustración 1. [9]

![Ilustración 1. Semiconductores tipo n. Imagen tomada de: Energía solar fotovoltaica (Germán López).](image_url)

Semiconductor tipo p o positivo: Para formar este tipo de semiconductor se debe exponer el cristal de silicio a una atmósfera que esté conformada por un elemento químico como el boro (B), el cual posee tres electrones de valencia que constituirán un enlace químico con el silicio, pero como el silicio cuenta con cuatro electrones entonces se dice que hay una carencia del cuarto electrón y se produce un hueco. Este hueco se sitúa en los niveles energéticos llamados aceptadores, que permiten ser ocupados por electrones. Cuando un semiconductor tipo p se conecta a un circuito eléctrico y se le aplica un campo eléctrico aparece una conductividad debida al deslazamiento de los electrones de hueco en hueco en la dirección el polo positivo. Esto se puede observar en la ilustración 2. [9]
6.4 Funcionamiento de una celda solar fotovoltaica

Estas celdas se conforman por la unión de dos materiales semiconductores, uno tipo n y otro tipo p. Al relacionarse estos dos tipos de semiconductores conocidos como una unión diodo (unión p-n), aparece un polo positivo y uno negativo, por lo que un campo eléctrico se ha formado debido a la difusión de electrones desde la zona n, donde están los electrones libres, hasta la zona p, donde están los huecos, obteniendo así una polaridad localizada en la interface de la unión p-n, sin olvidar que la materia siempre es neutra compensando el número de cargas negativas con las cargas positivas, como se observa en la Ilustración 3.
COMPOSICION FISICA DE UNA CELDA SOLAR FOTOVOLTAICA

En las Ilustraciones 4 y 5 se puede observar los componentes que se encuentran en las celdas solares fotovoltaicos.

Ilustración 4. Esquema de una celda Fotovoltaica. Imagen tomada de Energía Solar Fotovoltaica (German López)

Ilustración 5. : Modulo fotovoltaica. Imagen tomada de: Seminarios PV in Bloom. Introducción a los SFCR.pdf
El voltaje depende del tipo de material con que se construya. Un aspecto a tener en cuenta es que el aumento de la temperatura de la celda incide en la disminución de la tensión de trabajo, que es más o menos del orden de 0.5V siendo a base del silicio, mientras que la intensidad de corriente generada es proporcional a la superficie expuesta. [9]

6.4.1 Tipo de celdas solares fotovoltaicas

1. **Silicio monocristalino**: En el proceso de cristalización todos sus átomos están perfectamente ordenados. Su color característico es monocromático: azul oscuro con brillo metálico. Como ventajas se puede decir que tienen un ahorro en el espacio que ocupa el panel, tienen un elevado nivel competitivo en el mercado, ofrecen un mayor rendimiento frente a las células poli-cristalinas.

2. **Silicio policristalino**: En el proceso de cristalización sus átomos cambian de dirección y alineación. Presenta un aspecto de amalgama de cristales de distintos tonos azulados y grises con brillo metálico. Como ventajas se tiene que es más económico que los paneles de silicio monocristalino, gran competencia en este tipo de tecnología, son fabricadas para potencias habituales.

3. **Silicio amorfo**: No presenta una estructura cristalina ordenada y los átomos de silicio se han depositado formando una capa fina sobre un soporte transparente. Su aspecto es de tonos marrón y gris oscuro. Son de uso típico en las calculadoras y otros aparatos pequeños de funciones diversas. [9]

TIPOS DE CELDAS SOLARES FOTOVOLTAICAS

![Imagen de paneles fotovoltaicos]

La potencia nominal promedio de estas celdas oscilan entre 50 y 200 Wp, aunque existen algunos fabricantes que ofrecen celdas de 200 Wp en adelante, la eficiencia de estos módulos fotovoltaicos con estándares de irradiación y temperatura es de: (1,000W / m^2, 25°C), para celdas en silicio mono cristalino está entre 12 y 15 %, para celdas en silicio poli cristalino está entre 11 y 14 % y para celdas en silicio amorfo se encuentra entre 5 y 7 %. [10]

6.5 Interconexiones de los módulos solares fotovoltaicos

Es necesario que en un montaje de módulos fotovoltaicos se conecten entre si varios de estos, para poder alcanzar la potencia necesaria. Por lo cual la potencia pico total del montaje generador (P_{PG}) es igual al producto de la potencia pico por modulo (P_{PM}) multiplicado por el número total de módulos (N_T).

\[P_{PG} = P_{PM} \times N_T \] (1)

1. **Conexión en serie:** Esta conexión se hace cuando se une el polo positivo de un módulo con el negativo del siguiente. Esto permite que el voltaje se incremente tantas veces como módulos se tengan, mientras que la corriente es igual en cualquiera de los módulos.

2. **Conexión en paralelo:** En esta conexión se deben conectar entre si todos los polos positivos y todos los polos negativos, para lo cual se obtiene un voltaje igual en todo el sistema, mientras que la corriente generada se incrementa tantas veces como módulos se conecten en paralelo.

3. **Conexión mixta serie/paralelo:** Esta conexión tiene las dos conexiones simultáneamente, teniendo como resultado la corriente y el voltaje de la siguiente manera.

\[I_G = i_M \times N_P \] (2)
\[V_G = v_M \times N_s \] (3)

El número total de módulos se determina con la multiplicación de los módulos en paralelo con los módulos en serie. [11]
6.6 Baterías de los sistemas solares fotovoltaicos

Se debe tener en cuenta que el tiempo de consumo es mucho mayor que el tiempo de captación solar, por lo que se debe prevenir el consumo en momento de poca captación y almacenar la energía generada. Para este proceso se utilizan las baterías o acumuladores electroquímicos.

Las baterías se dividen en primarias y secundarias, que para el caso de las celdas fotovoltaicas, se utilizarán las secundarias, debido a que estas pueden recargarse después de una descarga haciendo pasar a través de ellas una corriente eléctrica generada desde el exterior.

La batería más usada es la de plomo/ácido, debido a su buen comportamiento y su bajo costo, en segundo lugar está el acumulador alcalino.

Las principales causas del deterioro de una batería Pb/ácido se deben a:

- El sometimiento a sobrecargas prolongadas, o sea que se sigue cargando después de completar la carga.
- No cargar la batería en un periodo de tiempo largo.
- No vigilar el nivel de electrolítico, que por fugas de agua las placas entren en contacto con el aire.
- No limpiar y proteger los terminales ni las zonas de contacto entre ellos.

Las tres funciones principales de una batería de un sistema fotovoltaico son:

1. Almacenamiento de la energía producida por los paneles fotovoltaicos (PV)
2. Suplir la potencia requerida por las cargas
3. Actuar como un estabilizador de voltaje en el sistema eléctrico. La batería suaviza o reduce temporalmente los altos niveles de voltaje que podían ocurrir en los sistemas eléctricos de los PV. [11]

6.6.1 Inconvenientes con las baterías

Sobre Recargas.

Bajas Recargas.
Corto circuitos.
Sulfatarse.
Poca agua de batería.
Auto descarga. [11]

6.6.2 **Criterios para la selección de la batería**

Modo de operación.
Almacenamiento.
Cantidad y variabilidad de cargas.
Máxima carga permitida.
Requerimientos diarios de la descarga.
Condiciones ambientales.
Vida útil.
Requerimientos del mantenimiento.
Sellado y apertura.
Auto descarga.
Numero de baterías según configuración de los módulos.
Tamaño y peso.
Susceptibilidad al hielo.
Concentración electrolítica.
Toxicidad y reciclable.
Costo.
Garantía. [11]
6.7 Regulador de Carga

Este se encarga de suministrar la tensión e intensidad de corriente que debe llegar al banco de baterías según se encuentre el estado de la carga, con el fin de protegerlo de sobrecargas, mediante la interrupción de la corriente de carga una vez se haya completado, además debe proteger el banco de baterías contra descargas excesivas, interrumpiendo el suministro de corriente al consumo, ante una bajada de tensión.

Un regulador de carga se ubica entre el panel solar y la batería, el cual se encarga de lo siguiente:

Proteger a la batería contra la sobrecarga: esto pasa cuando el regulador controla la energía que proviene del módulo a la batería, reduciendo el paso de corriente cuando la batería alcanza el nivel de carga completa, el circuito de control de tensión desconecta el interruptor, por lo tanto el sistema fotovoltaico separa a la batería del módulo. Una vez que la batería se descarga al nivel calculado, el relé cierra el interruptor y permite el paso de la tensión que se obtiene de los paneles, integrando de nuevo la batería al sistema fotovoltaico.

Dar información básica: Que el usuario pueda monitorear el estado del sistema, conociendo la tensión, corriente y carga en el acumulador, por medio de Led’s o pantallas LCD.

El regulador de tensión controla constantemente el estado de la carga de las baterías y regula la intensidad de carga de las mismas para alargar su vida útil. También genera alarmas en función del estado de dicha carga. [12]

6.7.1 ¿Cómo trabaja un regulador de carga?

Este trabajo dependerá de la cantidad de paneles solares fotovoltaicos y del tamaño de las baterías, cumpliendo con las siguientes etapas de carga.

Carga inicial: Cuando la batería tiene un nivel bajo de carga el regulador deja pasar toda la corriente del módulo, hasta que la batería se carga a un 80%.

Carga de absorción: En esta etapa el regulador disminuye el paso de corriente procedente de los módulos hasta alcanzar un estado de carga del 100%.
Carga de flotación: Luego de que la batería llega al 100% de carga, el regular solo deja pasar la corriente necesaria para que la batería se mantenga en el 100%.

Carga de ecualización: Es una función que se presenta en baterías de plomo-ácido con mucho electrolito líquido. Este proceso consiste en que la batería tenga una sobrecarga controlada para reducir la estratificación del ácido y la sulfatación dentro de la batería. [12]

6.7.2 ¿Qué tipos de reguladores hay para el uso de sistemas fotovoltaicos?

Hay cuatro tipos de reguladores los cuales son: En serie, Paralelo, Modulación de anchura de pulso (PWM), Punto de máxima potencia (MPPT).

Serie: Estos son los regulador más sencillos y económicos de todos pero actualmente son los menos utilizados, y se conectan en serie entre el modulo y la batería.

Paralelo (o shunt): Estos reguladores reducen gradualmente la corriente hasta tener un nivel de 100% de carga, y además tienen como ventaja que son económicos y sencillos.

Modulación de anchura de pulso (PWM): Este regulador funciona emitiendo pulsos de carga a la batería, los cuales dependiendo del ancho del valle, así mismo es la carga de la batería. Mientras la batería aumenta su carga, el ancho de pulso disminuye. Estos reguladores son económicos y fiables.

Punto de máxima potencia (MPPT): Estos reguladores trabajan con el máximo de potencia del módulo fotovoltaico, dotados de convertidores de corriente, por la tanto el voltaje generado por máxima potencia es mucho mayor que el voltaje de carga generado por una batería de 12 V. Por lo tanto este tipo de reguladores puede aumentar entre 10 y 35 % la energía obtenida de los módulos. Tienen como desventaja que son casi el doble de costosos de un modulador de pulso, pero con la ventaja de un mayor rendimiento del generator. [11]

6.8 Inversor o convertidos cc/ca

Ya que la energía suministrada por las celdas fotovoltaicas y por el banco de baterías es corriente continua (CC), y el suministro de aparatos con funcionalidad es corriente Alterna (CA), es
necesario el uso de un inversor de corriente que trasforme la corriente de continua en alterna a 110V o 220V y 60 Hz. Los convertidores más usados son los estáticos. El rendimiento de un convertidor puede estar entre el 80% y el 90%, pero al momento de convertir la corriente se generan unas pérdidas entre 10 y el 15%.

Para seleccionar un buen inversor se debe tener en cuenta las tensiones de corriente alterna y las distintas frecuencias, que para este caso están entre los 110V y 60Hz.

Datos a tener en cuenta para la selección de un convertidor

Siempre que se quiera seleccionar un convertidor es de gran importancia revisar detalladamente la ficha técnica, para evidenciar en ella los siguientes parámetros.

Asegurarse que la potencia sea constante en Vatios (W), Kilovatios (KW) o Kilovoltio amperios (kVa), siendo esta la potencia máxima que entregaría el inversor.

Potencia pico o de arranque sea la requerida para romper con la inercia del sistema.

La eficiencia cumpla para que el sistema sea eficaz.

Que el voltaje de entrada para los módulos este dentro de los 12 - 48 V.

Que el voltaje de salida en corriente alterna del inversor sea de (110-220V) y con una frecuencia de 60 Hz.

Verificar el tipo de onda en corriente alterna, con el fin de evidenciar que tan limpia es la corriente alterna que entrara a los equipos. [12]

Asegurarse que tanto consumo propio o sin carga tiene el inversor mientras los equipos se encuentran apagados, ya que esto genera pérdidas de carga en las baterías, para lo cual sería importante desconectar el inversor.

Existen dos tipos de inversores recomendables para sistemas fotovoltaicos que son:

Inversor de conexión directa: Estos permiten que los equipos se conecten directamente con una potencia entre 150 – 2000W

Inversores cableados: Estos son aquellos que se conectan a un red y suelen tener una potencia >=1000. [11]
6.9 Tecnología Smart Grid

Es una red eléctrica que puede integrar eficientemente el comportamiento y las acciones de todos los usuarios conectados a esta. (Generadores y Consumidores), por lo tanto estas redes deben contar con productos y servicios innovadores, junto con monitoreo inteligente, control, comunicación y tecnologías de auto restablecimiento.

La red eléctrica con la que se cuenta actualmente presenta falencias en cuanto a flexibilidad en el sistema de generación, transmisión y distribución.

Una Smart Grid integra tecnologías avanzadas de sonorización y adquisición de datos, métodos de control y comunicaciones en la red eléctrica, como se puede observar en la siguiente imagen [13].

6.9.1 Atributos que debe tener la tecnología Smart Grid

Rentabilidad de suministro
Optimizar el uso de la generación de energía y el almacenamiento en combinación con los recursos de distribución y control de las cargas a consumir, para asegurar un bajo costo.

Minimizar el impacto ambiental que tiene la producción de electricidad.

Reducción en el uso y la generación de electricidad, incremento en la eficiencia de la entrega de energía a los sistemas.

Monitoreo de cada componente para permitir un mantenimiento automático y prevención de suspensión de la energía. [13]

6.9.2 Diferencias entre una red SG (Smart Grid) y una de uso Convencional

- La red SG cuenta con la interacción bidireccional entre usuarios y el proveedor de energía.
- Cuando se piensa en la integración de redes inteligentes con energías renovables se complica el manejo de estas debido a que las energías solar, eólica, marítima, entre otras pueden ser afectadas por cambios ambientales ocasionando variaciones en la red.
- Las redes inteligentes (Smart Grid), tienen como objetivo la auto recuperación, con el fin de detectar, analizar, responder y restaurar el servicio.
- Estas redes tienen como objetivo ahorrar energía, reducir costes e incrementar la fiabilidad.
- Estas redes inteligentes tienen como ventaja que los usuarios al contar con una configuración bidireccional podrán ser consumidores como generadores de electricidad.
- La idea es que las tarifas sean dinámicas, variando su precio en función de la demanda y siendo el usuario conocedor de las mismas en tiempo real, para conseguir eso, se añadirán en los hogares unos dispositivos inteligentes (Smart meter) que vendrán a remplazar a los clásicos contadores y que son capaces de informar en cada momento del precio de la energía que se consume. [14]
DIFERENCIAS ENTRE LA RED TRADICIONAL Y UNA RED SMART GRID

![Diagrama de Traditional Grid vs Smart Grid](image)

Ilustración 8. Sistema de distribución de la energía. Imagen tomada de Smart Grid Integrating Renewable

6.10 Ventajas y desventajas de un sistema solar fotovoltaico

6.10.1 Ventajas

Cuando se habla de la energía solar como abastecimiento de electricidad se piensan en las ventajas que la implementación de celdas fotovoltaicas podría generarles a los inversionistas, por tanto aquí se van a exponer las principales ventajas que esto genera.

Como ventaja fundamental se tiene que este tipo de energía no genera contaminantes.

La energía solar como fuente energética representa tener en casa una fuente inagotable.

Esta energía tiene la particularidad de implementarse en donde la red eléctrica no llega.

Un sistema fotovoltaico es de gran facilidad de mantenimiento.

Genera ahorro de dinero a medida que los combustibles fósiles cada vez son más escasos y aumentan su precio.

No ocupa un espacio adicional para la instalación de las celdas fotovoltaicas. [15]
Beneficios económicos:

La energía solar es ahora una inversión financiera inteligente. Las dos razones son que se va a proteger de los aumentos en los costos energéticos y aumentar el valor de su propiedad.

Venta del exceso de Electricidad:

Con la implementación de la tecnología Smart grid, se puede vender el exceso de electricidad producida por el sistema fotovoltaico, lo que le da a los inversionistas el beneficio de un negocio en casa.

Electricidad Garantizada

Los paneles Solares son garantizados por hasta 25 años y hay evidencia en estudios acelerados de tiempo que pueden producir electricidad por 50 años o más, con mínima degradación.

Electricidad Confiable y Segura

Los sistemas son confiables, duraderos, capaces de soportar los cambios climáticos y proveen energía limpia. Requieren poco mantenimiento y con la opción de baterías pueden proveer energía durante apagones eléctricos.

Flexibilidad

Los sistemas Solares Eléctricos o Fotovoltaicos son modulares y expandibles, puede aumentar su capacidad en caso de que en el futuro se alteren sus necesidades.

Energía Segura

Reduzca la dependencia al carbón, gas natural y otras fuentes de energía dependientes de precios controlados por otros y reduzca la susceptibilidad de manipulaciones en el mercado.

Creación de Empleos

Cada que se decide instalar un sistema fotovoltaico se genera trabajo en manufactura, instalación, servicio, ventas y mercadeo.
Energía Independiente

En vez de pagar la mensualidad de electricidad, se puede controlar el uso de la energía produciendo parte o toda su electricidad. Los costos del petróleo continúan inestables y continuarán aumentando según se agoten las reservas mundiales, sea su propio productor de energía y evite los constantes cambios drásticos en precio. [15]

6.10.2 Desventajas

Las desventajas que estos sistemas de aprovechamiento de energía solar son mínimas pero existen algunas a tener en cuenta.

El cambio de radiación solar afectaría el aprovechamiento de la totalidad de las celdas fotovoltaicas.

La principal desventaja es la gran inversión que se debe hacer al principio para esperar a recuperarla. [15]

Realizar una correcta revisión documental, dio grandes criterios de selección para cada uno de los elementos del sistema solar fotovoltaico y así poderlo dimensionar adecuadamente. Razón por la cual es una investigación bastante amplia dentro del proyecto para asegurarse de que las características de los elementos seleccionados sean las específicas en el momento de abastecer la necesidad energética establecida.
7. ALTERNATIVAS DE SOLUCIÓN

Para la integración de paneles solares se cuenta con tres tipos de sistemas; Estos sistemas fotovoltaicos son los siguientes

1. Sin conexión a la red. (Autónoma)
2. Conectados a la red.
3. Conectado a la red con resguardo de baterías. (Híbridos)

7.2 Sistemas no conectados a la red

Tienen como objeto satisfacer total o parcialmente la demanda de energía eléctrica de aquellos lugares donde no existe red eléctrica de distribución o ésta en de difícil acceso.

Los sistemas aislados normalmente están equipados con sistemas de acumulación de energía, ya que sólo pueden proporcionar energía durante el día y la demanda se produce a lo largo del día y de la noche.

Principales componentes de un sistema no conectado a la red

- Módulos fotovoltaicos
- Regulador de carga
- Sistema de acumulación
- Inversor
- Elementos de protección del circuito

La configuración de un sistema fotovoltaico autónomo se puede observar en la siguiente ilustración.

Ilustración 9: Sistema no conectado a la red. Imagen tomada de: http://www.solener.com/esquema1.jpg
Para estos sistemas se tienen las siguientes aplicaciones

- Electrificación rural de viviendas y pequeños grupos aislados.
- Electrificación de locales para servicio comunitario, en zonas aisladas, como escuelas, puestos de salud, salones comunales, iglesias, etc.
- Suministro eléctrico de alojamientos ganaderos e iluminación de naves agrícolas.
- Iluminación pública.
- Sistemas de bombeo de agua.
- Señalización de carreteras y zonas marítimas.
- Suministro eléctrico a estaciones de tratamiento de agua.
- Sistemas de protección catódica a oleoductos y gaseoductos. La corriente generada sirve para oponerse a los procesos de óxido-reducción de los metales, evitando así a la corrosión electroquímica.
- Sistemas remotos de telecomunicaciones.
- Suministro eléctrico en estaciones meteorológicas aisladas. [16]

7.2 Sistemas conectados a la red

Un sistema fotovoltaico para conexión a la red, está constituido por un generador fotovoltaico y un inversor que convierte la corriente continua del generador en corriente alterna con la tensión y la frecuencia requeridas por las compañías eléctricas.

El sistema fotovoltaico se constituye por un número determinado de paneles, conforme a la potencia nominal requerida y la potencia pico de los módulos seleccionados. El voltaje que se producirá de estos módulos debe corresponder al voltaje de operación del inversor, y se obtiene conectando en serie los paneles, y para obtener la potencia se conectan dichas series en paralelo.

Para que el sistema fotovoltaico genere la máxima eficiencia al regulador de carga (MPPT) explicado anteriormente, cuenta con un elemento de control que se encarga de seguir el comportamiento de máxima potencia del arreglo fotovoltaico.

Estas instalaciones cuentan con sistemas de seguimiento del estado de la tensión de la red de distribución, de manera que se garantice el correcto funcionamiento de las mismas en lo
referente a la forma de entregar la energía, tanto en modo como en tiempo, evitando situaciones peligrosas. [16]

Por otra parte se eliminan las baterías que son la parte más cara y compleja de las instalaciones.

Elemento que componen un sistema conectado a la red

- Módulos fotovoltaicos
- Inversor para la conexión a la red
- Elementos de protección del circuito
- Contador de energía

Aplicaciones conectadas a la red eléctrica

- Suministros parcial o total a viviendas conectadas a la red.
- En centrales fotovoltaicas simples o mixtas.

La configuración de los sistemas conectados a la red se puede observar en las Ilustraciones 11 y 12.

Ilustración 10: Sistema Conectado a la red. Imagen tomada de: Configuración típica de un sistema fotovoltaico conectado a la red, Imagen tomada de: http://www.sitiosolar.com/wp-content/uploads/2014/01/definitivo-bueno-de-verdad.png
1. Módulos fotovoltaicos.
2. Inversor.
3. Red eléctrica.
4. Sistema de conexión a la red eléctrica.
5. Consumo en corriente alterna. [17]

7.3 Sistema híbrido de sistemas fotovoltaicos

En algunos casos el sistema fotovoltaico aislado se puede complementar con otro a fin de tener mayores garantías de disponer de electricidad. Cuando un sistema fotovoltaico se denomina sistema híbrido, en general se utiliza otras energías y en especial la red eléctrica.

La configuración de los sistemas híbridos puede ser variable y depende del tipo de equipos que se empleen para adaptar la potencia necesaria.

Un sistema fotovoltaico solar híbrido es una combinación de la tecnología de la energía solar, y la Red Eléctrica de forma de poder integrar de la mejor forma ambas fuentes de energía. Si la energía producida a través de generadores fotovoltaicos es suficiente para el consumo de los hogares, el inversor utiliza la energía fotovoltaica y la carga de los excedentes a la batería.

Del mismo modo, si el consumo es superior a la energía fotovoltaica, el inversor tomaría la energía que le falta de la red pública, las siguientes ilustraciones muestran la configuración adecuada de este tipo de sistemas [18].
Los componentes de un sistema solar fotovoltaico híbrido son la unión de cada uno de los componentes de los sistemas conectados a la red y de los sistemas autónomos, la única diferencia es que el inversor contara con tecnología Smart Grid, lo que hace posible que este dispositivo direccione automáticamente la electricidad necesaria de las baterías a los electrodomésticos, o que por el contrario, direccione la energía almacenada restante a la red, adicionalmente este
inversor contara con un regulador de corriente interno, con el propósito de que el sistema no sufra sobrecargas y por ende no se generen cortos circuitos.

Esta combinación de tecnología se dimensiona principalmente para que los usuarios aporten ambientalmente y tengan una producción adicional de energía. Con esta tecnología logran comenzar un negocio desde casa y sin tener que realizar ninguna actividad laboral.

ALGUNAS INSTALACIONES EN COLOMBIA CON ESTAS ALTERNATIVAS

Teniendo conocimiento de algunas de las alternativas que existen para la instalación de estos sistemas fotovoltaicos, se mostraran algunas de las aplicaciones existentes para realizar una comparación entre ellas y evaluar cuál sería su viabilidad.

Esta imagen, muestra una instalación conectada a la red en apartamentos que se realizó en Pereira. Al hacerse esta investigación se documenta que Colombia tiene las mejores posibilidades para el desarrollo de energías alternativas y renovables, entre ellas la fotovoltaica. Un dato del instituto de planificación y promoción de Soluciones Energéticas, adscrito al Ministerio de Minas y energía, señala que del total de la energía consumida en el país, menos de 3% es solar.

No obstante, algunos expertos comentan que la posición geográfica que tiene Colombia en el mapa mundial es privilegiada, al estar sobre la zona ecuatorial, el país tiene radiación solar constante en la mayor parte del territorio. [19]

Ilustración 14. Pan3les solares instalados en edificios de Pereira. Imagen tomada de [19].
La siguiente imagen muestra una instalación en barranquilla, de la cual se estima que la energía solar es la nueva tecnología que ya se está comercializado en Colombia. La historia de la energía solar en Colombia se parte en dos, a partir del 2014 con la promulgación del nuevo marco jurídico de las energías renovables, que obliga al gobierno a promover el uso de energías limpias, mediante incentivos tributarios, fiscales y arancelarios tangibles, más una serie de reglas y sistemas que faciliten la incorporación de energía limpia al sistema eléctrico nacional y su libre intercambio. [20]

![Ilustración 15. Casa en barranquilla con sistema solar fotovoltaico. Imagen tomada de [20]](image15)

Los sistemas no conectados a la red suelen instalarse en las zonas rurales de país, en especial en el sector del caribe colombiano, algunos de estos desarrollos se muestran en la siguiente ilustración, uno de los ejemplos se evidencia en Mendoza donde se pondrá en marcha el proyecto de Energías Renovables en mercados eléctricos Rurales para abastecer de energía eléctrica a áreas rurales alejadas de los centros urbanos, que no disponen de electricidad por encontrarse muy alejadas de las redes de distribución. El proyecto pretende instalarles a 900 familias 5000 paneles solares fotovoltaicos no conectados a la red. [21]

![Ilustración 16. Proyecto rural de instalaciones fotovoltaicas. Imagen tomada de [21]](image16)
Sin embargo, en este proyecto se plantean tres alternativas de solución, de las cuales se selecciona la tercera, la cual involucra la tecnología Smart Grid y la combinación de las dos primeras alternativas. En Colombia todavía no se han podido implementar sistemas híbridos, ya que la red suministrada por las electrificadoras debería tener distribución bidireccional de electricidad, y en Colombia todavía no se ha desarrollado esta nueva y eficiente tecnología, a pesar de que ya está aprobado legalmente para que las empresas encargadas de la distribución eléctrica lo implementen, las entidades encargadas no han realizado el desarrollo tecnológico, razón por la cual no hay evidencia de este tipo de sistemas en el territorio nacional.

Investigar sobre las posibles soluciones existentes a esta problemática ambiental que se vive a diario en la actualidad, aporta grandes criterios para la selección de la solución más apropiada y con más beneficios económicos y ambientales, por eso se exponen estas tres alternativas de solución.
8. DIMENSIONAMIENTO

El análisis de las cargas eléctricas es el primer paso y el más importante en el dimensionamiento de los sistemas fotovoltaicos; el consumo de energía y la demanda de potencia dicta la cantidad de electricidad que se debe producir.

Se deben considerar todas las cargas existentes y futuras cargas potenciales, una baja estimación de las cargas da como resultado un sistema pequeño y que no puede operar las cargas con la confiabilidad que es requerida, y tampoco es recomendable sobredimensionar el sistema ya que esto ocasionaría costos elevados [23].

Se comienza con el análisis de cargas, ya que el correcto dimensionamiento de un sistemas solar fotovoltaico se debe hacer de atrás para delante, es decir, se inicia con la carga y se termina con los paneles, como se muestra en la siguiente ilustración.

8.1 Análisis de Cargas

La cantidad de energía eléctrica de un hogar se determina con el propósito de saber la demanda de potencia durante cierto periodo de tiempo. El consumo de las cargas domiciliarias no es continuo, por lo que se debe hacer un análisis del tiempo de operación de cada uno de los aparatos a utilizar.
Para calcular el tiempo de operación de cada una de las cargas, se deben tener en cuenta dos factores, que hay aparatos que manejan ciclos de trabajo intermitente (ON-OFF), y que por lo tanto tienen un porcentaje de tiempo en el que están en operación, como lo es el caso de las neveras, es decir que pueden estar conectadas todo el día pero que el real funcionamiento es solo una fracción del día, y el otro factor es que hay cargas operadas manualmente por los usuarios que se conectan y se desconectan, el cálculo de consumo para estas cargas es sencillo ya que solo se debe tener en cuenta las horas de trabajo diario en el que fueron conectadas.

Para el caso de cargas domiciliarias se va a hacer un análisis del consumo de potencia que manejaría una casa normalmente. Este consumo se va a realizar de la siguiente manera y será evidenciado en la tabla 3. [23]

Este cálculo de energía consumida se hace como se muestra en el siguiente recuadro.

<table>
<thead>
<tr>
<th>POTENCIA DEL ELECTRODOMÉSTICO</th>
<th>TIEMPO EN QUE FUNCIONA EL ELECTRICO (horas)</th>
<th>ENERGIA CONSUMIDA ELECTRODOMÉSTICO (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nevera</td>
<td>7.2</td>
<td>2520</td>
</tr>
<tr>
<td>Horno microondas</td>
<td>0.036</td>
<td>43.2</td>
</tr>
<tr>
<td>Lavadora</td>
<td>0.714</td>
<td>571.2</td>
</tr>
<tr>
<td>Computador</td>
<td>4</td>
<td>2400</td>
</tr>
<tr>
<td>Bobillos</td>
<td>2</td>
<td>320</td>
</tr>
<tr>
<td>Plancha</td>
<td>0.28</td>
<td>280</td>
</tr>
<tr>
<td>Televisor</td>
<td>3</td>
<td>657</td>
</tr>
<tr>
<td>Sandwichera</td>
<td>0.011</td>
<td>3.3</td>
</tr>
<tr>
<td>Licuadora</td>
<td>0.011</td>
<td>3.3</td>
</tr>
<tr>
<td>Ducha</td>
<td>0.047</td>
<td>164.5</td>
</tr>
</tbody>
</table>

TOTAL 6962.5

Tabla 3. Tabla de consumo de cargas en la casa ejemplo
Estos datos se tomaron de una casa promedio de Bogotá con dos dormitorios, un estudio, dos baños, un sala comedor, una cocina y un patio. El tiempo de consumo diario de cada uno de los electrodomésticos se calculó de la siguiente manera:

- Nevera = 24 horas al día, pero como es un electrodoméstico que tiene un ciclo de trabajo (ON-OFF), su ciclo de trabajo es de un porcentaje del 30%, por lo tanto se multiplica 0.3 x 24 = 7.2 horas al día.
- Horno Microondas = 15 minutos por semana = 1/4 de hora.
- Lavadora = 5 horas por semana.
- Computador = 4 horas al día.
- Plancha = 2 horas por semana.
- Televisor = 3 horas por día.
- Sandwichera = 5 minutos por semana = 1/12 de hora.
- Licuadora = 5 minutos por semana = 1/12 de hora.
- Ducha = 140 minutos por semana = 1/3 de hora.

Teniendo la equivalencia del tiempo de consumo en horas de las cargas, estas se dividen por el número de días de la semana y así se sabe el número de horas/día de consumo.

\[\text{Energía Requerida} = 6.962 \text{ kW/día} \ [23] \]

En la siguiente ilustración se podrá observar la potencia necesaria por los electrodomésticos en promedio, lo que quiere decir que el cálculo realizado en esta investigación está muy aproximado a lo que se muestra en la ilustración 18.
Para obtener el valor real de consumo energético por las cargas se tiene en cuenta la selección del inversor.

8.2 Selección del inversor

Para dimensionar un sistema fotovoltaico en hogares se requiere de un inversor, ya que las cargas domiciliarias manejan corriente continua (C.A). Para la selección correcta de un inversor se deben tener en cuenta varios factores, el primero de ellos es que la potencia máxima de salida debe ser continua y debe suplir la demanda de potencia requerida, sin embargo es recomendable que el cálculo del inversor sea sobredimensionado para el caso de la integración de futuras cargas, el segundo factor es que debe suministrar corrientes de arranque y a su vez alimentar el resto de cargas del sistema, el tercero es el voltaje de salida.
Los inversores manejan una eficiencia que está en un rango de 80 y 90%, esto se debe a que hay pérdidas en la conversión de energía C.D en energía de C.A. [24]

La potencia nominal del inversor adecuado será el valor comprendido dentro del siguiente intervalo:

\[\text{Suma consumo cargas} \times 0.75 > P_{\text{inversor}} > \text{Suma consumo cargas} \times 0.5 \] (4)[23]

Calculo de la Potencia del inversor

\[5802.08 > P_{\text{inversor}} > 3868.05 \]

EL inversor requerido para este sistema debe tener una potencia menor de 5800 W y mayor a 3900 W, ya teniendo el cálculo de potencia del inversor se selecciona uno que encaje dentro de ese valor. El inversor que se va a utilizar en este proyecto va a ser un convertidor híbrido el cual tiene incorporado el regulador de cargas, cargador de baterías y el inversor de onda senoidal completa.

Inversor seleccionado

![Inversor Hibrido Solarrouter 4,5 Kw+](http://revosolar.com/solar-shop/es/inversores-hiproidos/257-inversor-hibrido-solarrouter-45kw.html)

En el ANEXO 1 se encuentra la hoja de datos del inversor donde se evidencia que cumple con el intervalo de potencia mencionado anteriormente y cada una de sus características técnicas.

Para un correcto dimensionamiento de un sistema solar fotovoltaico se debe hacer el análisis de la radiación solar del lugar de implementación del sistema. Para esta investigación se tomarán los datos para la ciudad de Bogotá. Ya teniendo este valor se procede a hacer el análisis del mes
crítico de radiación solar, y así dimensionar el sistema bajo estos parámetros, produciendo suficiente electricidad para satisfacer los requerimientos de la carga durante cualquier mes del año. [24]

8.3 Radiación solar mensual

Para esta investigación se van a tener en cuenta los datos de los mapas de radiación solar global sobre una superficie plana, se cuentan con 13 mapas, uno para cada mes del año y uno promedio anual, estos ilustran una aproximación de promedios anuales diarios de la cantidad de energía de la radiación solar que incide por metro cuadrado de superficie horizontal sobre el territorio colombiano, esto con el objetivo de utilizar en el dimensionamiento el valor energético más bajo por mes determinado en estos mapas. [5]

Con esta información se va a obtener las horas de pico solar que se pueden observar en la siguiente tabla.

TABLA 4

<table>
<thead>
<tr>
<th>IDEAM</th>
<th>PROMEDIO HSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene</td>
<td>4.946</td>
</tr>
<tr>
<td>Feb</td>
<td>4.840</td>
</tr>
<tr>
<td>Mar</td>
<td>4.605</td>
</tr>
<tr>
<td>Abr</td>
<td>4.147</td>
</tr>
<tr>
<td>May</td>
<td>3.803</td>
</tr>
<tr>
<td>Jun</td>
<td>3.930</td>
</tr>
<tr>
<td>Jul</td>
<td>4.109</td>
</tr>
<tr>
<td>Ago</td>
<td>4.429</td>
</tr>
<tr>
<td>Sep</td>
<td>4.282</td>
</tr>
<tr>
<td>Oct</td>
<td>4.325</td>
</tr>
<tr>
<td>Nov</td>
<td>4.236</td>
</tr>
<tr>
<td>Dic</td>
<td>4.745</td>
</tr>
<tr>
<td>Anual</td>
<td>4.361</td>
</tr>
</tbody>
</table>

Tabla 4. Características del recurso solar en Bogotá según la serie mensual del IDEAM [25].
8.4 Selección del módulo fotovoltaico

De la tabla número 4 se obtiene el mes crítico de radiación y el promedio de radiación anual para Bogotá, con estos datos el paso a seguir es a hacer el cálculo de potencia pico del generador que se hace con la siguiente ecuación:

\[
P_{\text{generador}} = \frac{E_{\text{SCD}}}{\eta_{\text{panel}} \cdot HPS} \tag{5}[23]
\]

Donde:

\(P_{\text{generador}} \) = Potencia pico del generador en condiciones estándar del medida.

\(\eta_{\text{panel}} \) = Rendimiento medio del panel fotovoltaico.

\(HPS \) = horas de pico solar para un ángulo de inclinación.

\(E_{\text{SCD}} \) = Energía eléctrica en C.D. requerida a diario (en W/día).

El cálculo de la potencia pico del generador se debe hacer con las horas de pico solar del mes crítico de radiación que para este caso se presenta en el mes de mayo con un valor de 3.803 HSP y queda de la siguiente manera:

\[
P_{\text{generador}} = \frac{6962 \text{ W}}{0.8 \cdot 3.803} = 2288.325 \text{ W}
\]

Ahora se realiza el cálculo de la cantidad de paneles necesarios para satisfacer la energía requerida, este cálculo se hace de la siguiente manera.

\[
N^{\circ} \text{ paneles} = \frac{P_{\text{generador}}}{P_{\text{panel}}} + 1 \tag{6}[23]
\]

Donde
P_{\text{generator}} = \text{Potencia pico del generador en condiciones estándar del medida.}

P_{\text{panel}} = \text{Potencia pico del panel fotovoltaico en kW, según los datos que proporciona el fabricante.}

Los datos del fabricante se van a obtener de la siguiente tabla y para este proyecto se seleccionará un panel con potencia de 220 W y así calcular el número de paneles necesario para el sistema fotovoltaico.

TABLA 5

<table>
<thead>
<tr>
<th></th>
<th>KU215</th>
<th>KU259 (Preliminary)</th>
<th>KU346</th>
<th>KU240</th>
<th>KU220</th>
<th>KU215</th>
<th>KU140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Power</td>
<td>315W</td>
<td>250W</td>
<td>240W</td>
<td>240W</td>
<td>220W</td>
<td>215W</td>
<td>140W</td>
</tr>
<tr>
<td>Number of Cells</td>
<td>80</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>54</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td>Tolerance</td>
<td>+5% / -3%</td>
</tr>
<tr>
<td>Maximum System Voltage</td>
<td>600V</td>
<td>600V</td>
<td>600V</td>
<td>600V</td>
<td>600V</td>
<td>600V</td>
<td>600V</td>
</tr>
<tr>
<td>Maximum Power Voltage</td>
<td>39.8V</td>
<td>29.8V</td>
<td>29.8V</td>
<td>29.8V</td>
<td>25.6V</td>
<td>26.6V</td>
<td>17.7V</td>
</tr>
<tr>
<td>Maximum Power Current</td>
<td>7.90A</td>
<td>8.39A</td>
<td>8.23A</td>
<td>8.06A</td>
<td>8.28A</td>
<td>8.09A</td>
<td>7.91A</td>
</tr>
<tr>
<td>Open Circuit Voltage</td>
<td>49.2V</td>
<td>36.9V</td>
<td>36.9V</td>
<td>36.9V</td>
<td>33.2V</td>
<td>33.2V</td>
<td>22.1V</td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>8.50A</td>
<td>9.09A</td>
<td>8.91A</td>
<td>8.59A</td>
<td>8.39A</td>
<td>8.78A</td>
<td>8.68A</td>
</tr>
<tr>
<td>Series Fuse Rating</td>
<td>15A</td>
<td>15A</td>
<td>15A</td>
<td>15A</td>
<td>15A</td>
<td>15A</td>
<td>15A</td>
</tr>
<tr>
<td>Length</td>
<td>65.4”</td>
<td>65.4”</td>
<td>65.4”</td>
<td>65.4”</td>
<td>59.1”</td>
<td>59.1”</td>
<td>59.1”</td>
</tr>
<tr>
<td>Width</td>
<td>52.0”</td>
<td>39.0”</td>
<td>39.0”</td>
<td>39.0”</td>
<td>39.0”</td>
<td>39.0”</td>
<td>26.3”</td>
</tr>
<tr>
<td>Depth</td>
<td>1.8”</td>
<td>1.8”</td>
<td>1.8”</td>
<td>1.8”</td>
<td>1.8”</td>
<td>1.8”</td>
<td>1.8”</td>
</tr>
<tr>
<td>Weight</td>
<td>60.6 lbs</td>
<td>46.3 lbs</td>
<td>46.3 lbs</td>
<td>46.3 lbs</td>
<td>41.0 lbs</td>
<td>41.0 lbs</td>
<td>28.4 lbs</td>
</tr>
</tbody>
</table>

Tabla 5. Tabla de las características de los paneles solares FV. Imagen tomada de: http://www.idelect.net/documentos/kyocera-kd-f-series-family.pdf [26]

Calculo de número de paneles

\[
N^\circ \text{ paneles} = \frac{2288.32 \, W}{220 \, W} + 1 = 11 \, \text{Paneles}
\]

Estos paneles deben tener una distribución ya sea en serie, en paralelo o combinadas según sea la necesidad del arreglo por tanto se procede a hacer el cálculo de conexión del sistema.
Cálculo de paneles en serie

\[N\° P_{série} = \frac{V_n}{V_{panel}} \quad (7) (Miguel Angel)[23] \]

Donde

\[V_n = \text{Tensión nominal de la instalación en voltios.} \]
\[V_{panel} = \text{Tensión nominal de los paneles en voltios.} \]

\[N\° P_{série} = \frac{48 \ V}{26.6 \ V} = 2 \]

Para calcular el número de ramas de paneles en serie, que puestas en paralelo componen el campo fotovoltaico, se divide el número total de paneles entre el número de paneles en serie que tiene cada rama [13].

\[N\° r_{FV} = \frac{N\° \text{ paneles}}{N\° P_{série}} \quad (8) (Miguel Ángel)[23] \]

Calculo de ramas en paralelo

\[N\° r_{FV} = \frac{12}{2} = 6 \]

8.5 Dimensionamiento del banco de baterías

Para dimensionar el sistema acumulador hay que tener en cuenta tanto los parámetros nominales de la batería como las condiciones de funcionamiento de la instalación [23].

8.5.1 Autonomía requerida

La máxima autonomía requerida para el sistema depende de varios factores, tales como: las condiciones del clima, el tipo de sistema fotovoltaico, las consideraciones de costo, etc.

Para los sistemas domésticos, los requerimientos típicos de autonomía están entre 3 y 5 días, por otro lado, para sistemas híbridos que usas alimentación en corriente alterna, los requerimientos de autonomía se encuentran entre 1 y 3 días [23].
Calculo de la capacidad de la batería

$$C_{100} = \frac{E_{SCD} \times N_{out}}{V \times PD_{max}} \quad (9) \quad (Agustín Castejón) [24]$$

Donde

- E_{SCD} = Energía eléctrica en C.D. requerida a diario en (W/día).
- N_{out} = Número de días de autonomía
- V = Voltaje del sistema en voltios.
- PD_{max} = Máxima profundidad de descarga de la batería.

Para este proyecto se especifica una autonomía de 3 días y una profundidad de descarga máxima del 70%, con lo cual la capacidad de la batería queda de la siguiente manera:

$$C_{100} = \frac{6962 W \times 3}{48 V \times 0.70} = 621.60 \text{ Ah}$$

Por cuestiones de seguridad se puede aumentar esa capacidad en un 10%, multiplicando la expresión anterior por $F_s = 1.1$. F_s es un factor de seguridad con el que se tienen en cuenta los efectos de suciedad, la variación de la eficiencia del generador fotovoltaico con el espectro solar, etc. [13].

$$C_{100} = \frac{1.1 \times 6962 W \times 3}{48 \times 0.70} = 683.76 \text{ Ah}$$

El número de baterías que formara el sistema acumulador estará dado por el cociente entre la capacidad nominal total y la batería escogida.

$$N^o \text{ baterías} = \frac{C_{100}}{C_{bat\text{escogida}}} \quad (10) \quad [23]$$

La batería que se va a escoger es la que tiene un amperaje de 250.
Los acumuladores se conectan entre sí de forma que la tensión del campo de baterías sea la de diseño del campo generador. Las baterías pueden formar grupos de baterías de forma que dentro de cada grupo se conecten en serie, mientras que los grupos se conectan en paralelo. Para la cual se emplea la ecuación 11.

\[N° \text{ baterías por grupo} = \frac{V_n}{V_{nbatería}} \]

Donde |

\[V_n = \text{tensión nominal del campo solar.} \]
\[V_{nbatería} = \text{tensión nominal del elemento de la batería elegida.} \]

Calculo de las baterías por grupo

\[N° \text{ baterías por grupo} = \frac{48}{12} = 4 \text{ Baterías} \]

Calculo del número de grupos

\[N° \text{ grupos} = \frac{N° \text{ baterías}}{N° \text{ baterías por grupo}} \]

\[N° \text{ grupos} = \frac{3}{4} = 1 \]

8.7 Soportaría para la instalación del Sistema Solar Fotovoltaico

Para la correcta instalación de este sistema se requiere contar con una estructura resistente y duradera, y cables encargados de realizar todas las interconexiones del sistema.

Los paneles solares se instalan en estructuras especiales, preferiblemente aluminio, los paneles no se colocan directamente sobre el techo, ya que necesitan ventilación para enfriarse. El voltaje de operación depende de la temperatura, a mayor temperatura, menor voltaje, lo que resulta en una menor generación de energía.
Características de la estructura de montaje:

- Liviana y resistente al óxido.
- Fácil montaje sobre techos, paredes o mástiles.
- Inclinación conveniente.
- Garantía: no menor a 20 años.
- Distancia mínima del techo para facilitar enfriamiento.

La estructura que se va a utilizar en este proyecto será como la mostrada en la siguiente ilustración.

8.8 Cableado para la instalación de un sistema solar fotovoltaico

Los sistemas fotovoltaicos, como toda instalación que queda permanentemente al aire libre, deben estar diseñadas para resistir los diferentes entornos ambientales y deben tener las siguientes Características:

1. **Resistencia a la intemperie**
 - Temperatura Máxima del conductor (120 °C)
 - Resistencia a temperaturas externas (Mínima -40°C)
 - Resistencia a los rayos ultravioletas (UV)
 - Resistencia al ozono
 - Resistencia a la absorción de agua
2. Vida Útil
 - Vida Útil de 30 Años

3. Resistencia mecánica
 - Resistencia al impacto

4. Ecológico

Teniendo clara estas características se procede a dimensionar los cables para el sistema según requerimientos técnicos, ya que los cables utilizados en un sistema solar fotovoltaico deben estar cuidadosamente diseñados, este cálculo se hace mediante la siguiente ecuación (14) y con ayuda de la tabla 6.

La cantidad de potencia en Watts producida por la batería o panel fotovoltaico está dada por:

\[P = V \times I \] (14)

De la ecuación (14) se saca la potencia que deben soportar los cables, tomando la potencia total del sistema sobre el voltaje al que va trabajar el todo el proceso, por lo tanto esta potencia da el siguiente resultado:

\[I = \frac{2288.3 \, W}{48 \, V} = 52.97 \approx 55 \, A \]

Se toma 55 A, ya que es el valor más cercano en la siguiente tabla, la cual ayuda a identificar el calibre del cable. [29]

<table>
<thead>
<tr>
<th>Calibre</th>
<th>Sección Real (mm²)</th>
<th>Intensidad Admisible (Amperios)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>2.081</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>3.309</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>5.261</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>8.366</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>13.300</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>21.150</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td>26.670</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>33.633</td>
<td>175</td>
</tr>
<tr>
<td>1</td>
<td>42.410</td>
<td>205</td>
</tr>
<tr>
<td>1/0</td>
<td>53.460</td>
<td>235</td>
</tr>
<tr>
<td>2/0</td>
<td>67.430</td>
<td>275</td>
</tr>
<tr>
<td>3/0</td>
<td>85.030</td>
<td>320</td>
</tr>
<tr>
<td>4/0</td>
<td>107.200</td>
<td>370</td>
</tr>
<tr>
<td>250 MCM</td>
<td>126.700</td>
<td>410</td>
</tr>
<tr>
<td>300 MCM</td>
<td>151.000</td>
<td>460</td>
</tr>
</tbody>
</table>

Como ya se calculó la corriente que deben soportar estos cables, se busca en la tabla 6 un número aproximado y se determina el calibre de este cable, el cual da como resultado:

Calibre = 10 y Sección Real (mm\(^2\)) = 5.261

Espacio total utilizado por todo el sistema solar fotovoltaico

Paneles

Medidas de cada panel:

Ancho = 99 cm
Largo = 150 cm

Como son 12 paneles, se realiza una distribución de 3 filas de cuatro paneles lo que da un área de 4,5 x 3,96 metros, área de la cual se debe disponer para la instalación.

Baterías

Ancho = 27,4 cm
Largo = 51,4 cm

Son tres baterías las que se necesitan, por lo cual se necesita un área adicional de 82,2 x 51,4 centímetros.

8.9 Mantenimiento de los componentes de un sistema fotovoltaico

Para que la vida útil de un sistema fotovoltaico se extienda de manera considerable se le debe realizar un mantenimiento preventivo, el cual se puede realizar en el propio lugar de operación y consta de las siguientes tareas: limpieza de los módulos fotovoltaicos, modificaciones del cableado, relleno de agua de las baterías, y reemplazo de fusibles, lámparas y reguladores de carga. [30]

8.9.1 Paneles

Los paneles requieren un mantenimiento nulo o muy escaso, debido a su propia configuración: no tienen partes móviles, y las células y sus conexiones internas están encapsuladas entre varias capas de material protector. Es conveniente hacer una inspección general de 1 ó 2 veces al año para asegurarse que las conexiones entre paneles y el regulador están bien ajustadas y libres de corrosión. Si es necesario utilizar simplemente agua y algún detergente no abrasivo, debe hacerse en horas frescas del día no cuando el sol incide sobre los paneles [29].
8.9.2 Inversor

El inversor es un elemento muy bien estructurado, por lo que el mantenimiento de este se hace muy sencillo y algunas de las operaciones que se puede realizar son las siguientes:

- Observación visual del estado y funcionamiento del inversor.
- Comprobación del conexionado y cableado del equipo.
- Observación de los valores instantáneos del voltímetro y amperímetro: dan una idea del comportamiento del instalación [29].

8.9.3 Baterías

Es el elemento de la instalación que requiere una mayor atención. Con un uso correcto y buen mantenimiento dependerá en gran medida su duración. Las operaciones usuales que debe realizarse son las siguientes:

- Comprobación del nivel el electrolito (cada 6 meses aproximadamente): debe mantenerse dentro del margen comprendido entre las marcas de “máximo y mínimo”. Si no existen estas marcas, el nivel correcto del electrolito es de 20 mm por encima del protector de separadores. Si se observa un nivel inferior en alguno de los elementos, se deben rellenar con agua destilada o desmineralizada.
- Al realizar la operación anterior debe comprobarse también el estado de los terminales de la batería; deben limpiarse posibles depósitos de sulfato y cubrir con vaselina neutra todas las conexiones.
- Debe comprobarse el conexionado del sistema de acumulación, repasando el apriete de las conexiones.
- Si una batería de plomo-ácido se deja en un estado de descarga durante un periodo prolongado de tiempo. Se producirá la sulfatación. Parte del sulfuro de ácido se combinará con plomo procedente de las placas para formar sulfato de plomo. El sulfato de plomo recubre las placas de forma que el electrolito no pueden penetrar en ellas. Esto supone una pérdida irreversible de capacidad en la batería que, incluso con la adición de agua, no se puede recuperar.
- Efectos del calor en las baterías, es un factor muy importante ya que la elevación de temperatura es sumamente perjudicial, si la temperatura de los recipientes es superior a
unos 40 grados, es necesario disminuir el régimen de carga. También deben evitarse los lugares fríos o expuestos a las temperaturas bajas. También evitar temperaturas inferiores a 0 grados ya que entonces la resistencia interna de las baterías aumenta mucho: para instalar las baterías, lo mejor es buscar un sitio donde la temperatura sea templada [30].

8.10. ANALISIS DE COSTOS

Al plantear la idea de investigar sobre la implementación de sistemas fotovoltaicos en hogares Colombianos, se piensa en el factor económico con el objetivo de garantizar la viabilidad de estos sistemas en Colombia. Para esto se hará una comparación entre la energía actual y la energía con métodos híbridos de sistemas fotovoltaicos y el tiempo de recuperación de la inversión inicial con estos sistemas.

El análisis de costos se ve directamente afectado por la producción actual de energía en Colombia con fuentes convencionales ya que el país posee una ubicación privilegiada que le permite la explotación de recursos hídricos, convirtiéndose en su recurso principal para la generación de electricidad. En el siguiente gráfico se podrá observar la capacidad instalada para generación eléctrica en Colombia.

![Ilustración 21. Capacidad instalada para generación eléctrica en Colombia por fuente de energía 2012. Imagen tomada de [24]](image)

Análisis de Costo Beneficio

El análisis de Costo Beneficio (ABC) es una herramienta analítica que pone en una balanza los costos y beneficios de un proyecto. En el caso de la generación de energía eléctrica en donde
los proyectos son de largo plazo y los costos y beneficios, tanto privados como sociales, varían de manera significativa según la tecnología empleada y las características de los recursos disponibles a nivel local, para esto se hace un análisis del costo nivelado de energía (LCOE).

Según el IRENA (2013), el LCOE de las tecnologías de energía a partir de fuentes renovables está determinado por seis componentes claves.

1. Costos de equipos y desempeño
2. Costo de operación y mantenimiento
3. Vida económica del proyecto
4. Costo del capital

Para este proyecto solo se van a tener en cuenta los cuatro componentes anteriores, ya que los otros dos incluidos es este indicador no son necesarios.

Costos de inversión

- Planeación y diseño, incluyendo estudios de factibilidad, desarrollo, ingeniería y trámites ante las autoridades.
- Transporte.
- Construcción. [31]

Costo de la energía con fuentes convencionales en Colombia vs energía solar fotovoltaica

Para este proyecto se tendrá en cuenta la tarifa energética que maneja la empresa Condesa, que tiene un costo por Kilovatio hora de 400 pesos. Se escoge esta empresa debido a que la casa que se usó como ejemplo para el dimensionamiento de consumo energético cuenta con el suministro de electricidad por parte de esta empresa, esto con el objetivo de hacer la comparación entre el costo de la energía obtenida con sistemas convencionales y el costo de la energía obtenida con sistemas alternativos.

Primero se analiza el costo anual que se tiene utilizando fuentes de energías convencionales, este análisis se hace tomando como ejemplo el pago mensual que realiza el apartamento que se tomó como ejemplo, siendo este pago de $ 60.000 peso mensuales, lo que equivale a un pago anual de $ 720.000 pesos colombianos.
Como segunda medida para esta comparación se tiene la siguiente tabla, donde se puede observar la inversión inicial que se tendría que hacer si se quiere instalar este tipo de tecnología en los hogares.

TABLA 7

<table>
<thead>
<tr>
<th>Elementos</th>
<th>Costos</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Fotovoltaicos</td>
<td>$ 1.050.000</td>
<td>11</td>
</tr>
<tr>
<td>Baterías</td>
<td>$ 800.000</td>
<td>3</td>
</tr>
<tr>
<td>Inversor</td>
<td>$ 6.000.000</td>
<td>1</td>
</tr>
<tr>
<td>Accesorios (tubos, soportes, cajas, cables, etc.)</td>
<td>$ 3.200.000</td>
<td>1</td>
</tr>
<tr>
<td>Mono de Obra de instalación</td>
<td>$ 1.200.000</td>
<td>1</td>
</tr>
<tr>
<td>Costo de Ingeniería</td>
<td>$ 5.000.000</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$ 29.350.000</td>
<td></td>
</tr>
<tr>
<td>IVA 16%</td>
<td>$ 1.768.000</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>$ 27.582.000</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7. Tabla de costos para la instalación de un sistema solar fotovoltaico en hogares Colombianos

Un factor a favor del uso de energías alternativas, es que los organismos encargados de verificar y desarrollar proyectos que involucren las energías limpias han generado normas que brindan beneficios para los usuarios de estos sistemas. Estos beneficios se ven reflejados en la Ley 1715 de 2014 (Mayo 13) del Anexo 2, donde especifican los reglamentos obligatorios a tener en cuenta para el uso correcto de estos sistemas y además los descuentos que se obtienen utilizándolas, los cuales se especifican en los Artículos 11 y el 12.

En el artículo 11 dice que: los obligados a declarar renta que realicen directamente inversiones en este sentido, tendrán derecho a reducir anualmente de su renta, por los 5 años siguientes al año gravable en que hayan realizado la inversión, el cincuenta por ciento (50%) del valor total de la inversión realizada.

El valor a deducir por este concepto, en ningún caso podrá ser superior al 50% de la renta líquida del contribuyente determinada antes de restar el valor de la inversión.

Para los efectos de la obtención del presente beneficio tributario, la inversión causante del mismo deberá obtener la certificación de beneficio ambiental por el Ministerio de Ambiente y ser debidamente certificada como tal por el Ministerio de Medio Ambiente y Desarrollo Sostenible, en concordancia con lo establecido en el artículo 158-2 del Estatuto Tributario.
Lo que quiere decir que esto genera una reducción a la inversión inicial; y en el Artículo 2 especifica que los elementos que componen el sistema solar fotovoltaico esta exentos de pagar IVA, lo que generaría una reducción en costos adicionales.

Como ya se sabe los diferentes costos que se tendrían con cada una de las alternativas, se procede a discernir las ventajas y desventajas que tiene la implementación de cada una de ellas.

Energía Alternativa

Inversión inicial $ 27’582.000 pesos. El sistema solar fotovoltaico tiene una vida útil de 25 años, y no obstante tiene como ventaja la venta del exceso de electricidad implementando la tecnología Smart Grid, esto hace que el tiempo de retorno de la inversión sea más corto.

Energía convencional

Gasto de energía actual $60.000 pesos mensuales, lo que equivale a $720.000 pesos colombianos anuales. Para hacer la comparación se multiplica este costo anual por los 25 años en que se utilizara el sistema SF, lo que equivales a $ 18’000.000 de pesos, sin tener en cuenta que a los 25 años el costo de la energía será más costoso.

Si se divide el costo de la inversión inicial con tecnología alternativa en 25 años, se tendrá un valor de $ 1’103.280 pesos anuales, por lo tanto al compararse con el valor pagado anualmente con fuentes convencionales hay una diferencia de $ 383.280, que es un valor aproximado ya que como se mencionó anteriormente el coto de energía aumenta y este costo disminuirá con el paso de los años.

Lo que se puede concluir, es que la diferencia de costos es muy alta, y a simple vista se podrá pensar en que la instalación de estos sistemas no parecen ser los más viables para la generación de energía, pero no obstante a el costo inicial se le debe descontar el 50% de la renta que pagan las personas anualmente por declaración de renta, y el ingreso que tendrán al vender el exceso de energía con la implementación de Tecnología Smart Grid, que pues en este momento no se pueden cuantificar estos dos valores ya que varían según la casa donde se instalen.
9. CONCLUSIONES

Al analizar el funcionamiento de un sistema solar fotovoltaico para evidenciar que tan factible es la energía solar como recurso energético en Colombia, se concluyó que el uso de la energía eléctrica en el país suministrada por las diferentes electrificadoras, genera costos muy bajos respecto con los costos obtenidos del diseño e instalación de los sistemas solares fotovoltaicos en hogares, lo que hace que actualmente estos sistemas no sean muy factibles para la generación de energía domiciliaria en Colombia, todo esto gracias a que Colombia es uno de los países que cuenta con la mayor capacidad hídrica. No obstante, otro factor a tener en cuenta es la falta de estudios para desarrollo e investigación de las energías limpias o renovables que se integren al sistema energético nacional, razón que no ha permitido que evolucione este tipo de tecnología, y que dichos costos sigan siendo un impedimento para la integración de estos sistemas en los hogares, por lo tanto se realizó esta investigación para aportar a Colombia algo nuevo de la tecnología existente en estos sistemas.

Así mismo, se determinó que la implementación de fuentes alternativas en hogares genera una gran inversión inicial, teniendo en cuenta esto, se propone una aproximación a una red domiciliaria que sustituya parte de la electricidad de un hogar, que sea amigable con el medio ambiente y que tenga tecnología Smart-Grid, para tener la posibilidad de vender el exceso de electricidad y así recuperar parte de la inversión inicial, haciéndola una tentativa de inversión para la sociedad.

De igual manera la investigación que se realizó contribuyó a comprender como Colombia está desaprovechando los beneficios que se pueden obtener de las diferentes fuentes energéticas no convencionales, y a conocer sobre las nuevas tecnologías de cuidado ambiental, para este caso Tecnología Smart Grid; En contraste con lo anterior se dimensionan las particularidades técnicas, reglamentarias y económicas que se llevan a cabo en un sistema solar fotovoltaico en hogares, para así comprender los beneficios que esta técnica le aporta al país y las posibles oportunidades de negocio que se generen. De manera semejante se realiza un análisis de cargas con el objetivo de obtener la potencia necesaria de los hogares, del cual se evidencia que los electrodomésticos térmicos son los más grandes consumidores de energía, característica que
permite generar una cultura de uso racional de la electricidad; dicho de otra manera estos sistemas solares fotovoltaicos cuentan con la integración de un controlador de cargas, donde los usuarios pueden supervisar el uso de la energía generada en casa, llevándolos a optimizar los gastos innecesarios y los usos inadecuados de los electrodomésticos, para darles el uso correcto, y todo esto con el propósito de aportar al avance e innovación de nuevas tecnologías, y así diversificar la canasta energética nacional dando flexibilidad al sistema de suministro de energía.

Como resultado de todas estas observaciones se presenta una solución que le de uso racional a la energía y que presente el estado de retorno económico a los beneficiarios de los sistemas fotovoltaicos, de donde resulta la idea de desarrollar un software que integre todo lo mencionado anteriormente y que calcule una propuesta viable.
Anexo 1

Características técnicas del inversor Solarrouter 4.5 +

<table>
<thead>
<tr>
<th>MODELO</th>
<th>Solarrouter 4.5KW plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de potencia de salida</td>
<td>3000 W</td>
</tr>
</tbody>
</table>

OPERACIÓN DE LA TECNOLOGIA GRID PV/INPUT (DC)

Máxima Potencia	4500W
Voltaje Nominal	360 VDC / 500 VDC
Numero de Controladores MPP / Máxima corriente de entrada	1 / 1 X 18 A
Rango de voltaje MPP	250 VDC == 450 VDC

GRID OUTPUT (AC)

Voltaje Nominal de salida	208/220/230/240 VAC
Rango de voltaje de salida	184 - 264.5 VAC
Corriente nominal de salida	19.5 A

EFFICIENCY

| Máxima eficiencia de conversión (DC/AC) | 96% |

OPERACIÓN SIN TECNOLOGIA GRID ENTRADA EN (DC)

Máxima Voltaje en DC	208/220/230/240 VAC
Rango de Voltaje MPP	184 - 264.5 VAC
Máxima Corriente de Entrada	19.5 A

OPERACION DEL SISTEMA HIBRIDO ENTRADA EN AC

Voltaje Inicial de Alimentación	120 - 140 VAC / 180 VAC
Rango de Voltaje MPP	170 - 280 VAC
Máxima corriente de entada	30 A

SALIDA

Voltaje Nominal de Salida	500 VDC
Rango de voltaje de salida	250 VDC == 450 VDC
Corriente nominal de salida	1 / 1 X 18 A

ENTRADA AC

Voltaje de Iniciación	208/220/230/240 VAC
Rango De Voltaje de Entrada	184 - 264.5 VAC
Máxima Corriente de entrada AC	19.5 A

SALIDA DE LA BATERIA EN AC

<p>| Voltaje Nominal de Salida | 208/220/230/240 VAC |
| Eficiencia (DC A AC) | 93% |</p>
<table>
<thead>
<tr>
<th>CARGADOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltaje Nominal en DC</td>
<td>48 VCD</td>
</tr>
<tr>
<td>Máxima Corriente de Carga</td>
<td>25A</td>
</tr>
<tr>
<td>GENERAL</td>
<td></td>
</tr>
<tr>
<td>PHYSICAL</td>
<td></td>
</tr>
<tr>
<td>Dimensiones Largo x Ancho x Alto</td>
<td>170 X 415 X420</td>
</tr>
<tr>
<td>Peso</td>
<td>21</td>
</tr>
<tr>
<td>INTERFACE</td>
<td></td>
</tr>
<tr>
<td>Puerto de Comunicación</td>
<td>RS-232/USB</td>
</tr>
<tr>
<td>Espacios inteligentes</td>
<td></td>
</tr>
<tr>
<td>MEDIO AMBIENTE</td>
<td></td>
</tr>
<tr>
<td>Temperatura de Operación</td>
<td>0 - 40°C</td>
</tr>
</tbody>
</table>
Anexo 2
LEY 1715 DE 2014
(Mayo 13)
Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional.

EL CONGRESO DE COLOMBIA

DECRETA:

Disposiciones generales

Artículo 1°. Objeto. La presente ley tiene por objeto promover el desarrollo y la utilización de las fuentes no convencionales de energía, principalmente aquellas de carácter renovable, en el sistema energético nacional, mediante su integración al mercado eléctrico, su participación en las zonas no interconectadas y en otros usos energéticos como medio necesario para el desarrollo económico sostenible, la reducción de emisiones de gases de efecto invernadero y la seguridad del abastecimiento energético. Con los mismos propósitos se busca promover la gestión eficiente de la energía, que comprende tanto la eficiencia energética como la respuesta de la demanda.

Artículo 2°. Finalidad de la ley. La finalidad de la presente ley es establecer el marco legal y los instrumentos para la promoción del aprovechamiento de las fuentes no convencionales de energía, principalmente aquellas de carácter renovable, lo mismo que para el fomento de la inversión, investigación y desarrollo de tecnologías limpias para producción de energía, la eficiencia energética y la respuesta de la demanda, en el marco de la política energética nacional. Igualmente, tiene por objeto establecer líneas de acción para el cumplimiento de compromisos asumidos por Colombia en materia de energías renovables, gestión eficiente de la energía y reducción de emisiones de gases de efecto invernadero, tales como aquellos adquiridos a través de la aprobación del estatuto de la Agencia Internacional de Energías Renovables (Irena) mediante la Ley 1665 de 2013.
Son finalidades de esta ley:

b) Incentivar la penetración de las fuentes no convencionales de energía, principalmente aquellas de carácter renovable en el sistema energético Colombiano, la eficiencia energética y la respuesta de la demanda en todos los sectores y actividades, con criterios de sostenibilidad medioambiental, social y económica;

c) Establecer mecanismos de cooperación y coordinación entre el sector público, el sector privado y los usuarios para el desarrollo de fuentes no convencionales de energía, principalmente aquellas de carácter renovable, y el fomento de la gestión eficiente de la energía;

d) Establecer el deber a cargo del Estado a través de las entidades del orden nacional, departamental, municipal o de desarrollar programas y políticas para asegurar el impulso y uso de mecanismos de fomento de la gestión eficiente de la energía de la penetración de las fuentes no convencionales de energía, principalmente aquellas de carácter renovable, en la canasta energética colombiana.

e) Estimular la inversión, la investigación y el desarrollo para la producción y utilización de energía a partir de fuentes no convencionales de energía, principalmente aquellas de carácter renovable, mediante el establecimiento de incentivos tributarios, arancelarios o contables y demás mecanismos que estimulen desarrollo de tales fuentes en Colombia;

f) Establecer los criterios y principios que complementen el marco jurídico actual, otorgando certidumbre y estabilidad al desarrollo sostenible de las fuentes no convencionales de energías, principalmente aquellas de carácter renovable, y al fomento de la gestión eficiente de la energía. Suprimiendo o superando gradualmente las barreras de tipo jurídico, económico y de mercado, creando así las condiciones propicias para el aprovechamiento de las fuentes no convencionales de energía, principalmente aquellas de carácter renovable, y el desarrollo de un mercado de eficiencia energética y respuesta de la demanda;

Artículo 4º. Declaratoria de utilidad pública e interés social. La promoción, estímulo e incentivo al desarrollo de las actividades de producción y utilización de fuentes no convencionales de energía, principalmente aquellas de carácter renovable, se declara como un asunto de utilidad pública e interés social, público y de conveniencia nacional, fundamental para
asegurar la diversificación del abastecimiento energético pleno y oportuno, la competitividad de la economía colombiana, la protección del ambiente, el uso eficiente de la energía y la preservación y conservación de los recursos naturales renovables.
Esta calificación de utilidad pública o interés social tendrá los efectos oportunos para su primacía en todo lo referente a ordenamiento del territorio, urbanismo, planificación ambiental, fomento económico, valoración positiva en los procedimientos administrativos de concurrencia y selección, así como a efectos de expropiación forzosa.

Artículo 5°. Definiciones. Para efectos de interpretar y aplicar la presente ley, se entiende por:

1. **Autogeneración.** Aquella actividad realizada por personas naturales o jurídicas que producen energía eléctrica principalmente, para atender sus propias necesidades. En el evento en que se generen excedentes de energía eléctrica a partir de tal actividad, estos podrán entregarse a la red, en los términos que establezca la Comisión de Regulación de Energía y Gas (CREG) para tal fin.

2. **Autogeneración a gran escala.** Autogeneración cuya potencia máxima supera el límite establecido por la Unidad de Planeación Minero-Energética (UPME).

3. **Autogeneración a pequeña escala.** Autogeneración cuya potencia máxima no supera el límite establecido por la Unidad de Planeación Minero-Energética (UPME).

6. **Desarrollo Sostenible.** Aquel desarrollo que conduce al crecimiento económico, a la elevación de la calidad de vida y al bienestar social, sin agotar la base de recursos naturales renovables en que se sustenta, ni deteriorar el ambiente o el derecho de las generaciones futuras a utilizarlo para la satisfacción de sus propias necesidades, por lo menos en las mismas condiciones de las actuales.

7. **Eficiencia Energética.** Es la relación entre la energía aprovechada y la total utilizada en cualquier proceso de la cadena energética, que busca ser maximizada a través de buenas prácticas de reconversión tecnológica o sustitución de combustibles. A través de la eficiencia energética, se busca obtener el mayor provecho de la energía, bien sea a partir del uso de una forma primaria de energía o durante cualquier actividad de producción, transformación, transporte, distribución y consumo de las diferentes formas de energía, dentro del marco del
desarrollo sostenible y respetando la normatividad vigente sobre el ambiente y los recursos naturales renovables.

13. Energía solar. Energía obtenida a partir de aquella fuente no convencional de energía renovable que consiste de la radiación electromagnética proveniente del sol.

CAPÍTULO II

Disposiciones para la generación de electricidad con FNCE y la gestión eficiente de la energía

Artículo 8°. Promoción de la autogeneración a pequeña y gran escala y la generación distribuida. El Gobierno Nacional promoverá la autogeneración a pequeña y gran escala y la generación distribuida por medio de los siguientes mecanismos:

a) Entrega de excedentes. Se autoriza a los autogeneradores a pequeña y gran escala a entregar sus excedentes a la red de distribución y/o transporte. Lo anterior aplicará una vez la CREG expida la regulación correspondiente. Esta regulación se expedirá conforme a los principios establecidos en las Leyes 142 y 143 de 1994 y los lineamientos de política energética expedidos por el Ministerio de Minas y Energía para tal fin.

Para el caso de los autogeneradores a pequeña escala que utilicen FNCER, los excedentes que entreguen a la red de distribución se reconocerán, mediante un esquema de medición bidireccional, como créditos de energía, según las normas que la CREG defina para tal fin, las cuales se fundamentarán en los criterios establecidos en las Leyes 142 y 143 de 1994 para definir el régimen tarifario, específicamente, el criterio de suficiencia financiera;

b) Sistemas de medición bidireccional y mecanismos simplificados de conexión y entrega de excedentes a los autogeneradores a pequeña escala. Los autogeneradores a pequeña escala podrán usar medidores bidireccionales de bajo costo para la liquidación de sus consumos y entregas a la red, así como procedimientos sencillos de conexión y entrega de excedentes para viabilizar que dichos mecanismos puedan ser implementados, entre otros, por usuarios residenciales;

c) Venta de energía por parte de generadores distribuidos. La energía generada por generadores distribuidos se remunerará teniendo en cuenta los beneficios que esta trae al sistema de
distribución donde se conecta, entre los que se pueden mencionar las pérdidas evitadas, la vida útil de los activos de distribución, el soporte de energía reactiva, etc., según la regulación que expida la CREG para tal fin, conforme a los principios establecidos en las Leyes 142 y 143 de 1994 y los lineamientos de política energética expedidos por el Ministerio de Minas y Energía para el mismo;

d) Venta de créditos de energía. Aquellos autogeneradores que por los excedentes de energía entregados a la red de distribución se hagan acreedores de los créditos de energía de los que habla el literal a) del presente artículo, podrán negociar dichos créditos y los derechos inherentes a los mismos con terceros naturales o jurídicos, según las normas que la CREG defina para tal fin;

CAPÍTULO III

Incentivos a la inversión en proyectos de fuentes no convencionales de energía

Artículo 11. Incentivos a la generación de energías no convencionales. Como fomento a la investigación, desarrollo e inversión en el ámbito de la producción y utilización de energía a partir de FNCE, la gestión eficiente de la energía, los obligados a declarar renta que realicen directamente inversiones en este sentido, tendrán derecho a reducir anualmente de su renta, por los 5 años siguientes al año gravable en que hayan realizado la inversión, el cincuenta por ciento (50%) del valor total de la inversión realizada.

El valor a deducir por este concepto, en ningún caso podrá ser superior al 50% de la renta líquida del contribuyente determinada antes de restar el valor de la inversión.

Para los efectos de la obtención del presente beneficio tributario, la inversión causante del mismo deberá obtener la certificación de beneficio ambiental por el Ministerio de Ambiente y ser debidamente certificada como tal por el Ministerio de Medio Ambiente y Desarrollo Sostenible, en concordancia con lo establecido en el artículo 158-2 del Estatuto Tributario.

Artículo 12. Instrumentos para la promoción de las FNCE. Incentivo tributario IVA. Para fomentar el uso de la energía procedente de FNCE, los equipos, elementos, maquinaria y servicios nacionales o importados que se destinen a la
pre-inversión e inversión, para la producción y utilización de energía a partir de las fuentes no convencionales, así como para la medición y evaluación de los potenciales recursos estarán excluidos de IVA.

Para tal efecto, el Ministerio de Medio Ambiente certificará los equipos y servicios excluidos del gravamen, con base en una lista expedida por la UPME.

Artículo 13. Instrumentos para la promoción de las energías renovables. Incentivo arancelario. Las personas naturales o jurídicas que a partir de la vigencia de la presente ley sean titulares de nuevas inversiones en nuevos proyectos de FNCE gozarán de exención del pago de los Derechos Arancelarios de Importación de maquinaria, equipos, materiales e insumos destinados exclusivamente para labores de pre-inversión y de inversión de proyectos con dichas fuentes. Este beneficio arancelario será aplicable y recaerá sobre maquinaria, equipos, materiales e insumos que no sean producidos por la industria nacional y su único medio de adquisición esté sujeto a la importación de los mismos.

La exención del pago de los Derechos Arancelarios a que se refiere el inciso anterior se aplicará a proyectos de generación FNCE y deberá ser solicitada a la DIAN en un mínimo de 15 días hábiles antes de la importación de la maquinaria, equipos, materiales e insumos necesarios y destinados exclusivamente a desarrollar los proyectos de energías renovables, de conformidad con la documentación del proyecto avalada en la certificación emitida por el Ministerio de Minas y Energía o la entidad que este faculte para este fin.

La exención del pago de los Derechos Arancelarios a que se refiere el inciso anterior se aplicará a proyectos de generación FNCE y deberá ser solicitada a la DIAN en un mínimo de 15 días hábiles antes de la importación de la maquinaria, equipos, materiales e insumos necesarios y destinados exclusivamente a desarrollar los proyectos de energías renovables, de conformidad con la documentación del proyecto avalada en la certificación emitida por el Ministerio de Minas y Energía o la entidad que este faculte para este fin.

CAPÍTULO IV

Del desarrollo y promoción de las FNCER

Artículo 19. Desarrollo de la energía solar.

1. La energía solar se considerará como FNCR. Se deberá estudiar y analizar las condiciones propias de la naturaleza de la fuente para su reglamentación técnica por parte de la CREG.
2. El Gobierno Nacional a través del Ministerio de Minas y Energía, Ministerio de Vivienda y Ministerio de Ambiente y Desarrollo Sostenible en el marco de sus funciones, fomentarán el aprovechamiento del recurso solar en proyectos de urbanización municipal o distrital, en edificaciones oficiales, en los sectores industrial, residencial y comercial.

3. El Gobierno Nacional a través del Ministerio de Minas y Energía directamente o a través de la entidad que designe para este fin reglamentará las condiciones de participación de energía solar como fuente de generación distribuida estableciendo la reglamentación técnica y de calidad a cumplir por las instalaciones que utilicen la energía solar, así como los requisitos de conexión, mecanismos de entrega de excedentes, y normas de seguridad para las instalaciones.

4. El Gobierno Nacional considerará la viabilidad de desarrollar la energía solar como fuente de autogeneración para los estratos 1, 2 y 3 como alternativa al subsidio existente para el consumo de electricidad de estos usuarios.

5. El Gobierno Nacional, por intermedio del Ministerio de Ambiente y Desarrollo Sostenible determinará los parámetros ambientales que deberán cumplir los proyectos desarrollados con energía solar así como la mitigación de los impactos ambientales que puedan presentarse en su implementación.

6. El Gobierno Nacional incentivará el uso de la generación fotovoltaica como forma de autogeneración y en esquemas de GD con FNCER.

7. El Gobierno Nacional a través del Ministerio de Minas y Energía considerará esquemas de medición para todas aquellas edificaciones oficiales o privadas, industrias, comercios y residencias que utilicen fuentes de generación solar. El esquema de medición contemplará la posibilidad de la medición en doble vía (medición neta), de forma que se habilite un esquema de autogeneración para dichas instalaciones.

Artículo 36. Esquemas empresariales. El Ministerio de Minas y Energía destinará recursos del Fondo Fenoge, creado por esta ley, para otorgar créditos blandos para la estructuración e implementación de esquemas empresariales, exclusivamente para los procesos productivos y su acompañamiento correspondiente, como mínimo por un período de dos años. El Ministerio de Minas y Energía establecerá los criterios para optar por estos recursos.

CAPÍTULO VIII
Ciencia y tecnología
4. Los sistemas de fomento de la investigación, desarrollo e inversión en el campo de las FNCE o de gestión eficiente de la energía deberán orientarse a:
 a) Potenciar la investigación, desarrollo e inversión en áreas clave para conseguir una alta penetración de tecnologías eficientes y limpias, y el empleo de recursos de origen renovable en el mediano y largo plazo;
 b) Facilitar y maximizar la penetración de FNCE en el sistema energético nacional, particularmente en lo que respecta a su contribución a la seguridad del suministro y estabilidad del sistema;
 c) Impulsar el desarrollo de tecnologías promisorias que se encuentran en fase de demostración y/o comercial;
 d) Explorar el potencial en el mediano y largo plazo de tecnologías limpias que se encuentran en fases de investigación y/o desarrollo; e) Reducir los costes asociados a la utilización de las FNCE. Para ello, estos sistemas de fomento deberán establecer líneas prioritarias de acción en tecnologías o campos concretos.
Anexo 3

DESCRIPCION DEL FUNCIONAMIENTO DEL SOFTWARE

Para el desarrollo de esta investigación se desarrolló un software que integra todo el dimensionamiento de un sistema solar fotovoltaico. Este cuenta con los siguientes parámetros:

1. Valores de potencia de cada uno de los electrodomésticos existentes en casa.
2. Calculo de la potencia utilizada mensualmente según el uso en horas diarias de cada electrodoméstico.
3. La potencia del inversor.
4. El número de paneles.
5. La distribución de los paneles en serie y en paralelo.
6. El número de baterías y la distribución de estas.
7. Calibre del cable a utilizar.

Este software se crea con el objetivo de general un cálculo del dimensionamiento de todo un sistema solar fotovoltaico para implementarlo en hogares.

Para el correcto funcionamiento del software se debe pensar muy bien en el tiempo de funcionamiento diario que puede generar los diferentes electrodomésticos en los hogares y para esto en la ventana de funcionamiento aparece cada una de las cargas, un espacio para especificar la cantidad de cada uno de estos y el tiempo de funcionamiento distribuido en tres grupos: Minutos por semana, Horas por semana y Horas por día, esto se hace para que al usuario le quede fácil determinar que tanto usa los electrodomésticos, ya teniendo la suma de las cargas utilizadas diariamente se procede a realizar el cálculo de los siete ítems mencionados anteriormente.

La ventana del software queda de la siguiente manera, en la cual se observan los botones encargados de realizar las funciones mencionadas previamente.
VENTANA PARA REALIZAR EL DIMENSIONAMIENTO DE UN SISTEMA SOLAR FOTOVOLTAICO INSTALADO EN HOGARES
BIBLIOGRAFÍA

[1] Ministerio de Ambiente, vivienda y desarrollo Territorial, Política de Prevención y Control de la Contaminación del Aire, (2010), Consultada el 22 de enero del 2015, https://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/Polit%3ACas_de_la_Direcci%C3%B3n%20de_Prevenci%C3%B3n_y_Control_de_la_Contaminaci%C3%B3n_del_Aire.pdf.

[8] Instituto de ciencias nucleares y energías alternativas, 1996, Censo y evaluación de sistemas solares fotovoltaicos instalados en Colombia, Bogotá, D.C, RUECOLOR LTDA.

[19] Menos del 3% de la energía que Colombia consume es solar, Consultada en Marzo 03 del 2015, http://www.larepublica.co/menos-de-3-de-la-energ%C3%ADa-que-colombia-consume-es-solar_215976.

