Show simple item record

dc.contributor.advisorCoy Barrera, Ericsson
dc.coverage.spatialCampus UMNGspa
dc.creatorRavagli Castillo, Andrea Carolina
dc.date.accessioned2017-06-30T18:08:41Z
dc.date.accessioned2019-12-26T21:08:55Z
dc.date.available2017-06-30T18:08:41Z
dc.date.available2019-12-26T21:08:55Z
dc.date.created2017-04-21
dc.identifier.urihttp://hdl.handle.net/10654/16163
dc.description.abstractEn las interacciones de las plantas con su entorno se producen respuestas metabólicas a través de la síntesis de metabolitos secundarios y, por tanto, los factores ambientales y ecológicos que influyen en la planta establecen variaciones en sus perfiles metabólicos. En el caso de los alcaloides, que se encuentran ampliamente distribuidos en plantas y son agentes activos en las interacciones evolutivas debido a que su metabolismo está controlado bajo regulación genética, se convierten en componentes variables relacionados con acondicionamiento debido a presiones externas. En este contexto, como parte del interés del grupo en el estudio de respuestas metabólicas de angiospermas basales, se evaluó la variación del metaboloma y la composición alcaloidal de la especie Magnolia grandiflora (Magnoliaceae) distribuida en diferentes lugares. A partir de los extractos etanólicos de hojas y cortezas analizados por HPLC-DAD-MS se detectaron 23 compuestos secundarios, de los cuales 13 correspondían a alcaloides, acompañados de lignanos y neolignanos, lactonas sesquiterpénicas, antraquinona, y triterpeno. En el análisis por HPLC-DAD-MS de los extractos alcaloidales de hojas y cortezas, se detectaron 28 compuestos secundarios de los cuales 23 eran alcaloides entre los que se destacaron los tipos aporfinoide (dehidroaporfinas y dioxoaporfinas), isoquinolínicos y bis-bencilisoquinolínicos, morfinanos, y alcaloides derivados del tipo hasubanonina. El análisis multivariado supervisado (i.e., OPLS) con la cuantificación de fenoles conectó la naturaleza fenólica de ciertos alcaloides expresados por la planta que, en su mayoría, fueron del tipo aporfinoide, los cuales concuerdan con la incorporación de fenoles en su estructura por proceso biosintético. En general, el análisis multivariado confirmó por consiguiente que existe variación en los perfiles metabólicos y en la composición alcaloidal en relación a las partes de la planta evaluadas, los tiempos de colecta y los ambientes establecidos. Así mismo, varias muestras de hojas y cortezas biosintetizaron compuestos secundarios específicos, incluidos los alcaloides, en tiempos de colecta diferentes. Con los resultados obtenidos se puede establecer que la planta M. grandiflora presenta quimiotipos ricos en alcaloides, especialmente del tipo aporfinoide, en respuesta a condiciones ambientales y ecológicas diferentes.spa
dc.description.sponsorshipVicerrectoría de Investigaciones de la Universidad Militar Nueva Granada. Proyecto IMP-CIAS-1567spa
dc.formatpdfspa
dc.languagespaspa
dc.publisherUniversidad Militar Nueva Granadaspa
dc.subjectMagnoliaceaespa
dc.subjectMagnolia grandifloraspa
dc.subjectRespuesta metabólicaspa
dc.subjectAlcaloidesspa
dc.subjectMetabolomaspa
dc.titleVariación del metaboloma y la composición alcaloidal en Magnolia grandiflora (MAGNOLIACEAE) de la Sabana de Bogotáspa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.subject.lembMAGNOLIACEASspa
dc.subject.lembALCALOIDESspa
dc.publisher.departmentFacultad de Ciencias Básicasspa
dc.type.spaTrabajo de gradospa
dc.creator.emailcravagli@gmail.comspa
dc.creator.emailericsson.coy@unimilitar.edu.cospa
dc.description.abstractenglishIn the interactions of plants with their environment metabolic responses are produced through the synthesis of secondary metabolites and, therefore, the environmental and ecological factors that influence the plant establish variations in their metabolic profiles. In the case of alkaloids that are widely distributed in plants and are active agents in the evolutionary interactions because their metabolism is controlled under genetic regulation , they become variable components related to conditioning due to external pressures. In this context, as part of the group's interest in the study of metabolic responses of basal angiosperms, the variation of the metabolome and the alkaloidal composition of the species Magnolia grandiflora (Magnoliaceae) distributed in different places was evaluated. Twenty-three secondary compounds, of which 13 corresponded to alkaloids, were detected additionally lignans and neolignans, sesquiterpene lactones, anthraquinone, and triterpene from ethanolic leaf and bark extracts analyzed by HPLC-DAD-MS. In the HPLC-DAD-MS analysis of alkaloidal extracts of leaves and barks, 28 secondary compounds were detected, of which 23 were alkaloids, among which the aporphinoid (dehydrophosphine and dioxoaporfins), isoquinolinic and bis-benzylisoquinolinic, morphinan , and hasubanonine-derived alkaloids. Supervised multivariate analysis (ie, OPLS) with the quantification of phenols connected the phenolic nature of certain alkaloids expressed by the plant, which were mostly of the aporphinoid type, which are in agreement with the incorporation of phenols into its structure by biosynthetic process . In general, the multivariate analysis confirmed that there is indeed variation in the metabolic profiles and in the alkaloidal composition based on the parts of the plant evaluated, the collection times and the established environments. Also, several leaf and bark samples biosynthesized specific secondary compounds, including alkaloids, at different collection times. With the results obtained it is possible to establish that the plant M. grandiflora presents chemotypes rich in alkaloids especially of the aporphinoid type, in response to different environmental and ecological conditions.spa
dc.title.titleenglishVariation of Metaboloma and Alkaloidal Composition in Magnolia grandiflora (MAGNOLIACEAE) of the Sabana of Bogotáspa
dc.subject.keywordMagnoliaceaespa
dc.subject.keywordMagnolia grandifloraspa
dc.subject.keywordMetabolic responsespa
dc.subject.keywordAlkaloidsspa
dc.subject.keywordMetabolomaspa
dc.publisher.programBiología Aplicadaspa
dc.creator.degreeBiólogospa
dc.source.bibliographicCitationAhmed SM. y Adeglegaleil SAM. 2005. Antifungal activity of extracts and sesquiterpene lactones from Magnolia grandiflora L. (Magnoliaceae). Int. J. Agr. Biol. 7(4): 638-642spa
dc.source.bibliographicCitationAniszewski T. 2007. Alkaloids-Secrets of life. Alkaloid chemistry, biological significance, applications and ecological role. First edition, Elsevier, UK, pp. 6-12, 141-143, 148-168spa
dc.source.bibliographicCitationAPG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161(2): 105-121spa
dc.source.bibliographicCitationArango GJ. 2008. Alcaloides y compuestos nitrogenados. Universidad de Antioquia, Medellín, Colombia, pp. 3, 38-50spa
dc.source.bibliographicCitationArora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP. 2012. Honokiol: a novel natural agent for cancer prevention and therapy. Curr. Mol. Med. 12(10): 1244-1252spa
dc.source.bibliographicCitationAzuma H, Thien LB, Toyota M, Asakawa Y, Kawano S. 1997. Distribution and differential expression of (E)-4,8 -dimetil-1,3,7 –nonatriene in leaf and floral volatiles of Magnolia and Liriodendron taxa. J. Chem. Ecol. 23(11): 2467-2478spa
dc.source.bibliographicCitationAzuma H, García-Franco JG, Rico-Gray V, Thien LB. 2001. Molecular phylogeny of the Magnoliaceae: The biogeography of tropical and temperate disjunctuions. Am. J. Bot. 88:2275-2285spa
dc.source.bibliographicCitationBenson WW, Brown KS, Gilbert LE. 1976. Coevolution of plants and herbivores: Passion flower butterflies. Evolution 29: 659-680spa
dc.source.bibliographicCitationBermejo A, Protais P, Blazquez MA, Rao KS, Zafra-Polo MC, Cortes D. 1995. Dopaminergic Isoquinoline Alkaloids from roots of Xylopia papuana. Nat. Prod. Res. 6: 57-62spa
dc.source.bibliographicCitationCastaneda-Acosta J, Cain AW, Fischer NH, Knopf FC. 1995. Extraction of bioactive sesquiterpene lactones from Magnolia grandiflora using supercritical carbon dioxide and near-critical propane. J. Agric. Food. Chem. 43(1): 63-68spa
dc.source.bibliographicCitationCavé A, Rasamizafy S, Hocquemiller R, Deverre JR, Hadi AHA. 1986. Alcaloides de Annonaceas 70. Pl. Med. Phytoth. 20: 251-254spa
dc.source.bibliographicCitationChang WL, Chung CH, Wu YC, Su MJ. 2004. The vascular and cardioprotective effects of liriodenine in ischemia-reperfusion injury via NO-dependent pathway. Nitric Oxide 11(4): 307-315spa
dc.source.bibliographicCitationChen BH, Chang HW, Huang HM, Chong IW, Chen JS, Chen CY, Wang HM. 2011. (-)-Anonaine induces DNA damage and inhibits growth and migration of human lung carcinoma h1299 cells. J. Agric. Food. Chem. 59: 2284-2290spa
dc.source.bibliographicCitationChen BL. y Nooteboom HP. 1993. Notes on Magnoliaceae III: the Magnoliaceae of China. Ann. Missouri Bot. Gard. 80: 999-1104spa
dc.source.bibliographicCitationChen JH, Du ZZ, Shen YM, Yang YP. 2009. Aporphine alkaloids from Clematis parviloba and their antifungal activity. Arch. Pharm. Res. 32(1): 3-5spa
dc.source.bibliographicCitationChiu N. y Chang K. 1995. The illustrated medicinal plants in Taiwan. Vol. 3. SMC Publ. Inc. Taiwan, pp 312spa
dc.source.bibliographicCitationChulia S, Ivorra MD, Cave A, Cortes D, Noguera MA, D’Ocon MP. 1995. Relaxant activity of three aporphine alkaloids from Annona cherimolia on isolated aorta of rat. J. Pharm. Pharmacol. 47: 647-650spa
dc.source.bibliographicCitationChung HS, Hon PM, Lin G, But PH, Dong H. 2003. Antitussive activity of Stemona alkaloids from Stemona tuberosa. Planta Med. 69: 914-920spa
dc.source.bibliographicCitationCicuzza D, Newton A, Oldfield S. 2007. The red list of Magnoliaceae. Primera edición. Fauna y Flora Internacional, Cambridge, UK, pp. 52spa
dc.source.bibliographicCitationClark AM, El-Feraly AS, Li WS. 1981. Antimicrobial activity of phenolic constituents of Magnolia grandiflora L. J. Pharm. Sci. 70: 951-952spa
dc.source.bibliographicCitationCrane PR, Friis EM, Pedersen KR. 1995. The origin and early diversification of angiosperms. Nature 374: 27-33spa
dc.source.bibliographicCitationDavé PC, Vogler B, Setzer WN. 2011. Composition of the floral essential oil of Magnolia grandiflora L. (Magnoliaceae): intraspecific and floral maturity variations. J. Essent. Oil Bear. Plant. 15(5): 694-702spa
dc.source.bibliographicCitationDeguchi T, Urakawa N, Hayama T, Ohkubo Y. 1963. Ganglion stimulating action of Candicine. Jpn. J. Pharmacol 13: 143-159spa
dc.source.bibliographicCitationDel Valle-Mondragón L, Tenorio-López FA, Zarco-Olvera G, Pastelín-Hernández G. 2007. Vulgarenol, a sesquiterpene isolated from Magnolia grandiflora, induces nitric oxide synthases II and III overexpression in guinea pig hearts. Z. Naturforsch. C Bio. 62(9-10): 725-730spa
dc.source.bibliographicCitationDewick PM. 2009. Medicinal Natural Products. A Biosynthetic Approach. Third Edition, John Wiley and Sons, Ltda, United Kingdom, pp. 7-8, 311, 336-355spa
dc.source.bibliographicCitationDey PM. y Harborne JB. 1997. Plant Biochemistry. Academic Press, United Kingdom, pp. 503-504spa
dc.source.bibliographicCitationDilcher DL. y Crane PR. 1984. Archaeanthus: an early angiosperm from the Cenomanian of the western interior of North America. Ann. Missouri Bot. Gard. 71: 351-383spa
dc.source.bibliographicCitationDuke JA. y Ayensu ES. 1985. Medicinal plants of China. Vol. 1 and 2. Reference Publ. Inc., Michigan, pp. 705spa
dc.source.bibliographicCitationEl-Feraly FS. y Chan YM. 1978. Isolation and characterization of the sesquiterpene lactones costunolide, parthenolide, costunolide diepoxide, santamarine, and reynosin from Magnolia grandiflora L. J. Pharm. Sci. 67(3): 347-350spa
dc.source.bibliographicCitationFadaeinasab M, Taha H, Mohd-Fauzi PN, Widyawaruyant A. 2015. Anti-malarial activity of isoquinoline alkaloids from the stem bark of Actinodaphne macrophylla. Nat. Prod. Commun. 10(9): 1541-1542spa
dc.source.bibliographicCitationFeild TS, Arens NC, Dawson TE. 2003. The ancestral ecology of Angiosperms: emerging perspectives from extant basal lineages. Int. J. Plant Sci. 164: S129-S142spa
dc.source.bibliographicCitationFiglar RB. y Nooteboom HP. 2004. Notes on Magnoliaceae IV. Blumea 49: 87-100spa
dc.source.bibliographicCitationGanzera M, Mair M, Stuppner H, Fischer NH, Khan IA. 2001. Analysis of sesquiterpene lactones in Magnolia grandiflora L. by micellar electrokinetic capillary chromatography. Chromatographia 54(9-10): 665-668spa
dc.source.bibliographicCitationGarcía N. 2007. Libro rojo de plantas de Colombia. Volumen 5: Las Magnoliáceas, Las Miristicáceas y Las Podocarpáceas. Serie libros rojos de especies amenazadas de Colombia. Instituto Alexander von Humboldt Bogotá, Colombia – CORANTIOQUIA- Jardín Botánico Joaquín Antonio Uribe de Medellín – Instituto de Ciencias Naturales de la Universidad Nacional de Colombia- Ministerio de Ambiente, Vivienda y Desarrollo Territorial, pp. 236spa
dc.source.bibliographicCitationGarg SN. y Kumar S. 1999. Volatile constituents from the flowers of Magnolia grandiflora L. from Lucknow, India. J. Essent. Oil Res. 11(5): 633-634spa
dc.source.bibliographicCitationGilman EF. y Watson DG. 1994. Magnolia grandiflora Southern Magnolia. Forest service. Department of agriculture. Fact sheet ST-371 pp. 3-4spa
dc.source.bibliographicCitationGlass DJ. y Hall N. 2008. A brief history of the hypothesis. Cell 134: 378-381spa
dc.source.bibliographicCitationGraziose R, Rathinasabapathy T, Lategan C, Poulev A, Smith PJ, Grace M, Lila MA, Raskin I. 2011. Antiplasmodial activity of aporphine alkaloids and sesquiterpene lactones from Liriodendron tulipifera L. J. Ethnopharmacol. 133(1): 26-30spa
dc.source.bibliographicCitationGuinaudeau H, Leboef M, Cavé A. 1975. Aporphine alcaloids. Lloydia 38: 275-338spa
dc.source.bibliographicCitationGülz PG, Müller E, Schmitz K, Marner FJ, Güth S. 1992. Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipifera. Z. Naturforsch. 47: 516-526spa
dc.source.bibliographicCitationHartman JR, Pirone TP, Sall MA. 2000. Pirone’s tree maintenance. Seventh edition, Oxford University Press, pp. 419spa
dc.source.bibliographicCitationHegnauer R. 1969. Chemotaxonomy Plant, Volume 5. Birkhäuser, Basel, Stuttgart, pp. 394-396spa
dc.source.bibliographicCitationHegnauer R. 1990. Chemotaxonomy Plant, Volume 9. Birkhäuser, Basel, Berlin, pp. 288-293spa
dc.source.bibliographicCitationHerbert RB. 1985. The chemistry and Biology of isoquinolina alkaloids. Editorial Springer-Verlag, Berlin, pp. 214spa
dc.source.bibliographicCitationHoffmann D. 2003. Medical Herbalism. The Science and Practice of Herbal Medicine. Healing Arts Press, Rochester Vermont, pp. 38spa
dc.source.bibliographicCitationHong L, Li G, Zhou W, Wang X, Zhang K. 2007. Screening and isolation of a nematicidal sesquiterpene from Magnolia grandiflora L. Pest Manag. Sci. 63(3): 301-305spa
dc.source.bibliographicCitationHuang KC. 1999. The pharmacology of Chinese herbs. Second edition. CRC Press, New York, pp. 512spa
dc.source.bibliographicCitationJudd WS, Campbell CS, Kellog EA, Teven PF. 1999. Plant Systematics: a Phylogenetic approach. Sinauer Associates, Inc. Massachusetts, USA, pp. 464spa
dc.source.bibliographicCitationKell DB. y Oliver SG. 2004. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26: 99-105spa
dc.source.bibliographicCitationKhan MR, Kihara M, Omoloso AD. 2002. Antimicrobial activity of Michelia champaca. Fitoterapia 73(7-8): 744-748spa
dc.source.bibliographicCitationKim S, Chong-Wook P, Young-Dong K, Youngbae S. 2001. Phylogenetic relationships in family Magnoliaceae inferred from NDHF sequences. Am. J. Bot. 88: 717-728spa
dc.source.bibliographicCitationKoo TH, Lee JH, Park YJ, Hong YS, Kim HS, Kim KW, Lee JJ. 2001. A sesquiterpene lactone, costunolide from Magnolia grandiflora inhibits NF-kB by targeting IkB phosphorylation. Planta Med. 67: 103-107spa
dc.source.bibliographicCitationKosar M, Goeger F, Can BKH. 2008. In vitro antioxidant properties and phenolic composition of Salvia virgate Jacq. from Turkey. J. Agric. Food Chem. 56: 2369-2374spa
dc.source.bibliographicCitationKubitzki K, Rohwer JG, Bittrich V. 1993. The families and genera of vascular plants. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid families. Volume II. Springer-Verlag Berlin Heidelberg, pp. 397, 399spa
dc.source.bibliographicCitationLeonardo TE. y Mondor EB. 2006. Symbiont modifies host life history traits that affect gene flow. Proc. R. Soc. B 273 (1590): 1079-1084spa
dc.source.bibliographicCitationLim TK. 2014. Edible medicinal and non-medicinal plants. Volume 8, Flowers. Springer Science+Business Media Dordrecht, pp. 243-244spa
dc.source.bibliographicCitationLozano G. 1994. Dugandiodendron y Talauma (Magnoliaceae) en el neotropico. Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Colección Jorge Álvarez Lleras. Instituto de Ciencias Naturales Universidad Nacional No. 3. Editora Guadalupe Ltda, pp. 147spa
dc.source.bibliographicCitationLuckner M. 1990. Secondary Metabolism in Microorganisms, Plants and Animals. Third edition, Springer-Verlag, Berlin Heidelberg, pp. 8spa
dc.source.bibliographicCitationLuo XD, Wu SH, Ma YB, Wu DG, Zhou J. 2001. Sesquiterpenoids from Magnolia grandiflora. Planta Med. 67: 354-357spa
dc.source.bibliographicCitationLuo M, Sun JF, Zhang B, Jiang L. 2012. Chemical composition and antioxidant activity of essential oil from Magnolia grandiflora L. seed. J. Wuhan Univ. Natur. Sci. 17(3): 249-254spa
dc.source.bibliographicCitationMartínez AL, Domínguez F, Orozco S, Chávez M, Salgado H, Gonzalez M, Gonzalez-Trujano ME. 2006. Neuripharmacological effects of an etanol extract of the Magnolia dealbata Zucc. leaves in mice. J. Ethnopharmacol. 106: 250-255spa
dc.source.bibliographicCitationMartínez LA, Ríos JL, Paya M, Alcaraz MJ. 1992. Inhibition of nonenzymic lipid peroxidation by benzylisoquinoline alkaloids. Free Radic. Biol. Med. 12: 287-292spa
dc.source.bibliographicCitationMartínez-Vázquez M, Estrada-Reyes R, Araujo-Escalona AG, Ledesma-Velázquez I, Martínez-Mota L, Moreno J, Heinze G. 2012. Antidepressant-like effects of an alkaloid extract of the aerial parts of Annona cherimolia in mice. J. Ethnopharmacol. 139: 164-170spa
dc.source.bibliographicCitationMohamed SM, Hassan EM, Ibrahim NA. 2010. Cytotoxic and antiviral activities of aporphine alkaloids of Magnolia grandiflora L. Nat. Prod. Res. 24(15): 1395-1402spa
dc.source.bibliographicCitationMorrison N, Bearden D, Bundy JG, Collette T, Currie F, Davey MP, Haigh NS, Hancock D, Jones O, Rochfort S, Sansone SA, Stys D, Teng Q, Field D, Viant MR. 2007. Standard reporting requirements for biological samples in metabolomics experiments: environmental context. Metabolomics 3: 203-210spa
dc.source.bibliographicCitationNakano T. 1954a. Studies on the alkaloids of magnoliaceous plants. XII. Alkaloids of Magnolia grandiflora L. (1). Pharm. Bull. 2(4): 321-325spa
dc.source.bibliographicCitationNakano T. 1954b. Studies on the alkaloids of magnoliaceous plants. XIII. Alkaloids of Magnolia grandiflora L. (2). Pharm. Bull. 2(4): 326-328spa
dc.source.bibliographicCitationNakano T. 1954c. Studies on the alkaloids of magnoliaceous plants. XIV. Alkaloids of Magnolia grandiflora L. (3). Structure of magnoflorine. Pharm. Bull. 2(4): 329-334spa
dc.source.bibliographicCitationNitao JK, Nair MG, Thorogood DL, Johnson KS, Scriber JM. 1991. Bioactive neolignanos from the leaves of Magnolia virginiana (Magnoliaceae). Phytochemistry 30: 2193-2195spa
dc.source.bibliographicCitationNordin N, Majid NA, Hashim NM, Rahman MA, Hassan Z, Ali HM. 2015. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression. Drug Des. Dev. Ther. 9: 1437-1448spa
dc.source.bibliographicCitationPubchem. 2016. Open chemistry database. https://pubchem.ncbi.nlm.nih.gov/ [consultado Junio 20, 2016]spa
dc.source.bibliographicCitationPyo MK, Yun-Choi HS, Hong YJ. 2003. Antiplatelet activities of aporphine alkaloids isolated from leaves of Magnolia obovate. Planta Med. 69(3): 267-269spa
dc.source.bibliographicCitationRahman MM, Lopa SS, Sadik G, Harun-Or-Rashid, Islam R, Khondkar P, Alam AH, Rashid MA. 2005. Antibacterial and cytotoxic compounds from the bark of Cananga odorata. Fitoterapia 76(7-8): 758-761spa
dc.source.bibliographicCitationRao KV. 1975. Glycosides of Magnolia grandiflora. Part I: Isolation of three crystalline glycosides. Planta Med. 27(1): 31-36spa
dc.source.bibliographicCitationRao KV. y Davis TL. 1982. Constituents of Magnolia grandiflora I: mono-O-methylhonokiol. Planta Med. 45(5): 57-59spa
dc.source.bibliographicCitationRao KV. y Juneau RJ. 1975. Glycosides of Magnolia. II. Structural elucidation of magnolidin. Lloydia 38(4): 339-342spa
dc.source.bibliographicCitationRehman JU, Ali A, Tabanca N, Raman V, Demirci B, Başer KHC, Khan IA. 2013. Biting deterrent and larvicidal activity of essential oils of Magnolia grandiflora against Aedes aegypti. Planta Med. 79: P20spa
dc.source.bibliographicCitationRojas Y, Soto R, Anaya E, Retuerto F, Fuertes C. 2004. Efecto antitumoral de los alcaloides hidrosolubles de Abuta grandifolia (Mart) Sandwith, en línea celular HEP-2. Faculta de farmacia y bioquímica UNMSM. Ciencia e investigación VII (1): 22-26spa
dc.source.bibliographicCitationSadava D, Heller HC, Orians GH, Purves WK, Hillis DM. 2008. Life. The Science of Biology. Eighth edition, Sinauer Associates, Inc, Sunderland, MA, pp. 641spa
dc.source.bibliographicCitationSchühly W, Khan SI, Fischer NH. 2009. Neolignans from North American Magnolia species with cyclooxygenase 2 inhibitory activity. Inflammopharmacology 17(2): 106-110spa
dc.source.bibliographicCitationSeigler DS. 1998. Plant Secondary Metabolism. 1st edition, Springer Science+Business Media, New York, pp. 12spa
dc.source.bibliographicCitationShamma M. y Guinaudeau H. 1984. Biogenetic pathways for the aporphinoid alkaloids. Tetrahedron 40: 4795-4822. En: Arango GJ. 2008. Alcaloides y compuestos nitrogenados. Universidad de Antioquia, Medellín, Colombia, pp. 49spa
dc.source.bibliographicCitationSharmeen R, Hossain N, Rahman M, Foysal J, Miah F. 2012. In vitro antibacterial activity of herbal aqueous extract against multi-drug resistant Klebsiella sp. isolated from human clinical samples. Int. curr. pharm. J. 1: 133-137spa
dc.source.bibliographicCitationSinha RK. 2004. Modern plant physiology. Alpha Science International Ltd., Pangbourne England, pp. 577spa
dc.source.bibliographicCitationTaiz L. y Zeiger E. 2010. Plant Physiology. Quinta edición, Sinauer Associates, Inc. USA, pp. 370spa
dc.source.bibliographicCitationThe Plant List. 2013. The Angiosperms (flowering plants). Versión 1.1. http://www.theplantlist.org/browse/A/#M [consultado Abril 7, 2016]spa
dc.source.bibliographicCitationTomita M, Watanabe Y, Furukawa H. 1961. Studies on the alkaloids of Magnoliaceous plants. XXV. Alkaloids of Magnolia grandiflora var. lanceolata Ait. Yakugaku Zasshi 81(1): 144-146spa
dc.source.bibliographicCitationTomita M. y Kozuka M. 1967. Studies on the alkaloids of magnoliaceous plants. 38. Alkaloids of Magnolia grandiflora Linn. Yakugaku Zasshi 87(9): 1134-1137spa
dc.source.bibliographicCitationTsai IL, Liou YF, Lu ST. 1989. Screening of isoquinoline alkaloids and their derivatives for antibacterial and antifungal activities. Gaoxiong Yi Xue Ke Xue Za Zhi 5: 132-145spa
dc.source.bibliographicCitationValiente M, D’Ocon P, Noguera MA, Cassels BK, Lugnier C, Ivorra MD. 2004. Vascular activity of (-)-anonaine, (-)-roemerine and (-)-pukateine, three natural 6a(R)-1,2-methylenedioxyaporphines with different affinities for alpha1-adrenoceptor subtypes. Planta Med. 70: 603-609spa
dc.source.bibliographicCitationVázquez-García JA, Neill DA, Asanza M, Recalde L. 2015. Magnolia vargasiana (Magnoliaceae), a new Andean species and a key to Ecuadorian species of subsection Talauma, with notes on its pollination biology. Phytotaxa 217: 26-34spa
dc.source.bibliographicCitationVelásquez C. y Serna M. 2005. Magnoliáceas de Antioquia. Primera edición. Impregon S.A., Colombia, pp. 32spa
dc.source.bibliographicCitationWang Y, Mu RM, Wang XR, Liu SX, Fan ZQ. 2009. Chemical composition of volatile constituents of Magnolia grandiflora. Chem. Nat. Compd. 45(2): 257-258spa
dc.source.bibliographicCitationWeerakkody NS, Caffin N, Turner MS, Dykes GA. 2010. In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control 21: 1408-1414spa
dc.source.bibliographicCitationWysocki W, Gulewicz P, Aniszewski T, Ciesiolka D, Gulewicz K. 2001. Bioactive preparations from alkaloid-rich lupin. Relation between chemical composition and biological activity. Bull. Pol. Acad. Sci. Biol. 49: 9-17spa
dc.source.bibliographicCitationYang MH, Blunden G, Patel AV, O’Neill MJ, Lewis JA. 1994. Coumarins and sesquiterpene lactones from Magnolia grandiflora leaves. Planta Med. 60(4): 390spa
dc.source.bibliographicCitationYasukawa S, Kato H, Yamaoka R, Tanaka H, Arai H, Kawano S. 1992. Reproductive and pollination biology of Magnolia and its allied genera (Magnoliaceae). I. Floral volatiles of several Magnolia and Michelia species and their roles in attracting insects. Plant Species Biol. 7: 121-140spa
dc.source.bibliographicCitationZelenski SG. 1977. Alkaloids of Nelumbo latea (Willd.)pers. (Nymphaeaceae). J. Pharm Sci 66(11): 1627-1628spa
dc.source.bibliographicCitationZhou J, Xie G, Yan X. 2011. Encyclopedia of traditional Chinese medicines. Molecular structures, pharmacological activities, natural sources and applications. Vol. 3. Isolated compounds H-M. Springer, Berlin, pp. 367spa
dc.source.bibliographicCitationZiyaev R, Shtonda NI, Sturua MD, Abdusamatov A, Tsakadze DM. 1999. Alkaloids of some Magnolia species. Chem. Nat. Compd. 35(3): 366-367spa
dc.source.bibliographicCitationAbadía J. y Álvarez AM. 2009. La espectrometría de masas, una herramienta esencial en Metabolómica y Análisis comparativo de muestras. Fundación AulaDei. Parque Científico Tecnológico. pp. 7-20spa
dc.source.bibliographicCitationAgilent. 2010. Nuevas perspectivas: Metabolómica en Agilent. http://www.chem.agilent.com [Consultado Febrero 17, 2014]spa
dc.source.bibliographicCitationAp Rees T. y Hill SA. 1994. Metabolic control analysis of plant metabolism. Plant Cell Environ. 17: 587-599spa
dc.source.bibliographicCitationAzcón-Bieto J. y Talón M. 2001. Fundamentos de fisiología vegetal. Primera edición. McGraw-Hill Interamericana de España S.A., Barcelona, pp.522spa
dc.source.bibliographicCitationBell EA. 1980. Secondary plant products. Encyclopedia of plant physiology, New series, Volume 8. Springer-Verlag, Berlin, pp. 11spa
dc.source.bibliographicCitationBenthin B, Danz H, Hamburger M. 1999. Pressurized liquid extraction of medicinal plants. J. Chromatogr. A 837: 211-219spa
dc.source.bibliographicCitationBermúdez AM. y Millán JL. 2013. Metodología para el mejoramiento en los procesos de dirección de proyectos del Fondo de pebención y atención de emergencias – FOPAE. Universidad EAN, pp- 13spa
dc.source.bibliographicCitationBravo L. 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11): 317-333spa
dc.source.bibliographicCitationCava MP. y Venkateswarlu A. 1971. Dehydroocopodine, dicentrinone, and other alkaloids from Ocotea macropoda and Hernandia jamaicensis. Tetrahedron, 27(13): 2639-2643spa
dc.source.bibliographicCitationChelombut’ko VA. y Israilov IA. 1988. Alkaloids of Papaver fugax. Chemistry of natural compounds, 24(4): 474-477spa
dc.source.bibliographicCitationCollinge DB, Gregersen P, Thordal-Christensen H. 1994. The induction of gene expression in response to pathogenic microbes. En: Mechanisms of plant growth and improved productivity: Modern approaches. Basra AS. Ed. Marcel Dekker, New York, pp. 391-433spa
dc.source.bibliographicCitationDeng SM, Cheng YX, Zhou J, Tan NH, Ding ZT. 2001. Magnoquinone and neolignanos from Magnolia rostrata. Acta Botánica Yunnanica, 2001-01. ISSN: 2095-0845spa
dc.source.bibliographicCitationEl-Feraly FS. 1983. Soulangianolide B. Phytochemistry, 22, 2239. En: KNApSAcK data base. 2017. http://kanaya.naist.jp/knapsack_jsp/information.jsp?word=C00012335 [consultado Febrero 20, 2017]spa
dc.source.bibliographicCitationEspinosa-García FJ. 1996. Revisión sobre la alelopatía de Eucalyptus L’Herit. Bol. Soc. Bot. 58: 55-74spa
dc.source.bibliographicCitationFiehn O, Kopka J, Trethewey RN, Willmitzer L. 2000. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72: 3573-3580spa
dc.source.bibliographicCitationGerhardt R. y Heldt HW. 1984. Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in nonaqueous media. Plant Physiol. 75: 542-547spa
dc.source.bibliographicCitationGilchrist CH. y Kosuge T. 1980. Aromatic amino acid biosynthesis and its regulation. En: Miflin BS Ed. The Biochemistry of Plants. A comprehensive treatise, Vol 5. Academic Press, New York, pp. 507-537spa
dc.source.bibliographicCitationGiraldo L. y Behrentz E. 2006. Inventarios de emisiones desarrollados en 2003 y 2006 por la Universidad de Los Andes. Disponibles en: www.cleanairnet.org/lac_pt/1473/articles-56439_recurso_1.ppt http://dspace.uniandes.edu.co:5050/dspace/bitstream/1992/939/1/Balkema+Tesis+Liliana+Giraldo.pdf En: Rojas NY. 2007. Aire y problemas ambientales de Bogotá. Universidad Nacional de Colombia, pp. 4-6spa
dc.source.bibliographicCitationGoodacre R, Vaidyanathan S, Dunn W, Harrigan G, Kell D. 2004. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22 (5): 245-252spa
dc.source.bibliographicCitationGrundon MF. y McGarvey JEB. 1966. Alkaloids from greenheart. Part III. The structure of rodiasine. Mass spectra of bisbenzylisoquinoline alkaloids. J. Chem. Soc. C, 1082-1084spa
dc.source.bibliographicCitationGutiérrez DM, Ortiz CA, Mendoza A. 2008. Medición de fenoles y actividad antioxidante en malezas usadas para alimentación animal. Simposio de Metrología, Santiago de Querétaro, México, M220-1108: 1-5spa
dc.source.bibliographicCitationHalket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. 2004. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 56(410): 219-243spa
dc.source.bibliographicCitationKamal-Eldin A, Moazzami A, Washi S. 2001. Sesame seed lignans: potent physiological modulators and possible ingredients in functional foods & nutraceuticals. Recent Pat. Food Nutr. Agric. 3(1): 17-29spa
dc.source.bibliographicCitationKashiwaba N, Morroka S, Kimura M, Ono M, Toda J, Suzuki H, Sano T. 1996. New morphinane and Hasubanane alkaloids from Stephania cepharantha. J. Nat. Prod. 59 (5): 476-480spa
dc.source.bibliographicCitationLattanzio V, Lattanzio VMT, Cardinali A. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research, 23-67 ISBN:81-308-0034-9spa
dc.source.bibliographicCitationLi J, Christophel DC, Conran JG, Li HW. 2004. Phylogenetic relationships within the “core” Laureae (Litsea complex, Lauraceae) inferred from sequences of the chloroplast gene matK and nuclear ribosomal DNA ITS regions. Pl. Syst. Evol. 246: 19-34spa
dc.source.bibliographicCitationLikhitwitayawuid K, Angerhofer CK, Cordell GA, Pezzuto JM, Ruangrungsi N. 1993. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Stephania erecta. J. Nat. Prod. 56(1): 30-38spa
dc.source.bibliographicCitationLong SP, Ainsworth EA, Rogers A, Ort DR. 2004. Rising atmospheric carbon dioxide: Plants face the future. Annual Review of Plant Biology, 55: 591-628spa
dc.source.bibliographicCitationMacheix JJ, Fleuriet A, Billot J. 2000. Fruit phenolics. Boca Ratón, Florida: CRC Press, Inc, pp. 378spa
dc.source.bibliographicCitationMacías FA, Galindo JC, Massanet GM. 1992. Potential allelopathic activity of several sesquiterpene lactone models. Phytochemistry, 31(6): 1969-1977spa
dc.source.bibliographicCitationManske RHF. 1967. The Alkaloids. Chemistry and physiology. Volume IX. Academic Press, New York, pp. 32spa
dc.source.bibliographicCitationManske RHF. 1968. The Alkaloids. Chemistry and physiology. Volume X. Academic Press, New York, pp. 409spa
dc.source.bibliographicCitationMilder IEJ, Arts ICW, van de Putte B, Venema DP, Hollman PCH. 2005. Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. British Journal of Nutrition, 93: 393-402spa
dc.source.bibliographicCitationMiyazawa M, Kasahara H, Kameoka H. 1993. Biotransformation of lignans: a specific microbial oxidation of (+)-eudesmin and (+)-magnolin by Aspergillus niger. Phytochemistry, 34(6): 1501-1507spa
dc.source.bibliographicCitationMudd JB. y Kozlowski TT. 1975. Responses of plants to air pollution. Academic Press Inc, New York, pp. 6, 24spa
dc.source.bibliographicCitationNielsen NPV, Carstensen JM, Smedsgaard J. 1998. Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimized warping. J. Chromatogr. A 805 (1): 17-35spa
dc.source.bibliographicCitationPenuelas J. y Estiarte M. 1998. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends in Ecology & Evolution, 13: 20-24spa
dc.source.bibliographicCitationPérez L, Rojas L, Carmona J, Ferrer H, Usubillaga A. 2010. Componentes volátiles de la Ocotea macropoda (Kunth) Mez. (Lauraceae). Abstract book of XIX SILAE (Società Italo-Latinoamericana Di Etnomedicina) Congress “Fernando Cabieses Molina” 2010 Villasimius, Cagliari, Italy, 6-10 september pp. 293spa
dc.source.bibliographicCitationPoore MD. Y Fries C. 1985. The ecologicl effects of Eucalyptus. FAO Forestry Paper, pp. 59spa
dc.source.bibliographicCitationPoore MD. y Fries C. 1987. Efectos ecológicos de los eucaliptos. Organización de las Naciones Unidas para la Agricultura y la Alimentación. FAO. Roma, ISBN 92-5-302286-8, pp. 53spa
dc.source.bibliographicCitationRinguelet J. y Viña S. 2013. Productos naturales vegetales. Editorial de la Universidad de La Plata. Buenos Aires, Argentina, pp. 196, 209spa
dc.source.bibliographicCitationRozo WV. y Mendoza LE. 2013. Implementación de técnicas de reconocimiento de patrones (Least Square Support Vector Machines) en procesos de selección de parámetros característicos aplicados a sistemas metabolómicos. Revista Colombiana de Tecnologías de Avanzada (RCTA), 1 (21): 104-112. ISSN: 1692-7257 – Volumen 1 – Número 21 – 2013spa
dc.source.bibliographicCitationSánchez-Moreno C. 2002. Compuestos polifenólicos: estructura y clasificación: presencia en alimentos y consumo: biodisponibilidad y metabolismo. Alimentaria 329: 19-28spa
dc.source.bibliographicCitationSarker SD. y Maruyama Y. 2002. Magnolia. The genus Magnolia. Taylor & Francis, London, pp. 53, 59spa
dc.source.bibliographicCitationScalbert A. y Williamson G. 2000. Dietary intake and bioavailability of polyphenols. J. Nutr 130: 2073S-2085Sspa
dc.source.bibliographicCitationShamma M. 1972. The Isoquinoline Alkaloids. Chemistry and pharmacology. Organic chemistry. Volume 25. Academic press, New York and London, pp. 222spa
dc.source.bibliographicCitationStreeter JG. y Strimbu CE. 1998. Simultaneous extraction and derivatization of carbohydrates from green plant tissues for analysis by gas-liquid chromatography. Anal. Biochem. 259: 253-257spa
dc.source.bibliographicCitationTaiz L. y Zeiger E. 2006. Plant physiology. Cuarta edición. Sinauer Associates INC Publishers. Sunderland, Massachusetts, pp. 764spa
dc.source.bibliographicCitationTalavera-Bustamante I, Bustio-Martínez L, Coma-Peña Y, Hernández-González N. 2013. Quimiometrix II, una plataforma automatizada para el procesamiento multivariante de datos químicos y bioquímicos. Experiencias de aplicación. Revista Cubana de Química, Vol. XXV, N° 3, 257-265spa
dc.source.bibliographicCitationTanahashi T, Su Y, Nagakura N, Nayeshiro H. 2000. Quaternary isoquinoline alkaloids from Stephania cepharantha. Chem. Pharm. Bull. 48(3): 370-373spa
dc.source.bibliographicCitationVecchietti V, Casagrande C, Ferrari G, Danieli B, Palmisano G. 1981. Alkaloids of Ocotea acutangula. Journal of the Chemical Society, Perkin Transactions 1, DOI: 10.1039/P19810000578, pp. 578spa
dc.source.bibliographicCitationWold S. y Sjostrom M. 1977. SIMCA: A method for analyzing chemical data in terms of similarity and analogy. En: Kowalski B (Ed.), Chemometrics: Theory and application, pp. 243-282spa
dc.source.bibliographicCitationZhang L, Geng Y, Duan W, Wang D, Fu M, Wang X. 2009. Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J. Sep. Sci. 32(20): 3550-3554spa
dc.source.bibliographicCitationAguiar R. y Wink M. 2005. Do naїve ruminants degrade alkaloids in the rumen? J. Chem. Ecol. 31(4): 761-787spa
dc.source.bibliographicCitationAniszewski T. 1994. The biological basis of quinolizidine alkaloids. Science of Legumes 1: 1-24spa
dc.source.bibliographicCitationBerenbaum MR. 1983. Coumarins and caterpilars: A case for coevolution. Evolution 37: 163-178spa
dc.source.bibliographicCitationColegate SM. y Molyneux RJ. 2008. Bioactive natural products. Detection, isolation, and structural determination. Second edition. CRC Press, New York, pp. 521spa
dc.source.bibliographicCitationGora J, Kalemba D, Kurowska A. 1980. Chemical substances of Magnoliaceas and Calendulaceas. Herb. Hung. 19: 151-171spa
dc.source.bibliographicCitationJacyno JM, Montemurro N, Bates AD, Cutler HG. 1991. Phytotoxic and antimicrobial properties of cyclocolorenone from Magnolia grandiflora. J. Agric. Food Chem. 39: 1166-1168spa
dc.source.bibliographicCitationKnaggs AR. 2003. The biosynthesis of shikimate metabolites. Nat. Prod. Rep. 20: 119-136spa
dc.source.bibliographicCitationKnölker HJ. 2014. The alkaloids Chemistry and Biology. Volume 73. Elsevier, Oxford UK, pp. 178spa
dc.source.bibliographicCitationLiscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ. 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry, 66(11): 1374-1393spa
dc.source.bibliographicCitationMarcano D. y Hasegawa M. 2002. Fitoquímica orgánica. Segunda edición. Consejo de Desarrollo Científico y Humanístico. Universidad Central de Venezuela, pp. 384spa
dc.source.bibliographicCitationMuzquiz M, Burbano C, Cuadrado C, De la Cuadra C. 1993. Determinación de factores antinutritivos termorresistentes en leguminosas I: Alcaloides. Inv. Agraria. Producción y Protección Veg., 8: 351-361spa
dc.source.bibliographicCitationPhillipson JD, Roberts MF, Zenk MH. 1985. The chemistry and biology of Isoquinoline alkaloids. Springer-Verlag Berlin, Heidelberg, pp. 217-220spa
dc.source.bibliographicCitationThorne AD, Pexton JJ, Dytham C, Mayhew PJ. 2006. Small body size in an insect shifts development, prior to adult eclosion, towards early reproduction. Proc. R. Soc. B 273(1590): 1099-1103spa
dc.source.bibliographicCitationTzin V. y Galili G. 2010. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant, 3(6): 956-972spa
dc.source.bibliographicCitationWarumby SM. y Lacava AL. 2007. Alcalóides Aporfinóides Do Gênero Ocotea (Lauraceae). Quim. Nova, 30(1); 92-98spa
dc.source.bibliographicCitationWink M. 2003. Evolution of secondary metabolities from an ecological and molecular phylogenetic perspective. Phytochemistry 64: 1: 3-19spa
dc.source.bibliographicCitationWink M. 2010. Introduction: biochemistry, physiology and ecological functions of secondary metabolites. En: Biochemistry of plant secondary metabolism. Wink M (Ed), Annual plant reviews, 40: 1-19spa
dc.source.bibliographicCitationWink M. y Mohamed GIA. 2003. Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolities on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem. Syst. Ecol. 31:8: 897-917spa
dc.source.bibliographicCitationWold S, Geladi P, Esbensen K, Ohman J. 1987. Multi-way principal components and PLS-analysis. J. Chemometrics 1 (1): 41-56spa
dc.source.bibliographicCitationZamora-Natera F, García-López P, Ruiz-López M, Salcedo-Pérez E. 2008. Composición de alcaloides en semillas de Lupinus mexicanus (fabaceae) y evaluación antifúngica y alelopática del extracto alcaloideo. Agrociencia, vol.42 no. 2 http://www.scielo.org.mx/scielo.php?pid=S1405-31952008000200006&script=sci_arttextspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record