Mostrar el registro sencillo del ítem

dc.contributor.advisorVelasco Vivas, Alexandraspa
dc.contributor.authorGuatibonza Artunduaga, Andrés Felipe
dc.contributor.otherSolaque Guzman, Leonardo Enriquespa
dc.coverage.spatialCalle 100spa
dc.date.accessioned2019-04-05T16:36:40Z
dc.date.accessioned2019-12-26T22:08:46Z
dc.date.available2019-04-05T16:36:40Z
dc.date.available2019-12-26T22:08:46Z
dc.date.issued2019-01-18
dc.identifier.urihttp://hdl.handle.net/10654/20905
dc.description.abstractLas lesiones de rodilla son frecuentes en personas de todas las edades. En todos los casos, la terapia física se prescribe para recuperar la fuerza y el rango de movimiento. Los dispositivos de asistencia robóticos están ganando la atención de la comunidad y tienen como objetivo mejorar la calidad de vida de los pacientes. En este artículo, proponemos un dispositivo de rehabilitación de rodilla de 5 barras de articulación. Estamos interesados en obtener el modelo dinámico completo del sistema de rehabilitación propuesto, con el fin de desarrollar y evaluar estrategias de control adecuadas en el trabajo futuro. Con este propósito, presentamos la formulación cinemática del dispositivo y luego, derivamos la dinámica utilizando dos enfoques, con el fin de validar el modelo; es decir, obtenemos la ecuación de movimiento utilizando el enfoque de Lagrange y un método algebraico que simplifica el modelado. Estos modelos se simulan y comparan con el comportamiento físico del sistema, mostrando la funcionalidad del sistema y la validez de los modelos cuando se realiza una rutina de rehabilitación.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.language.isoengspa
dc.rightsDerechos Reservados - Universidad Militar Nueva Granada, 2019spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.titleModelado cinemático y dinámico de un dispositivo asistencial de 5 barras para rehabilitación de rodillaspa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.lembCINEMATICA DE LA MAQUINARIAspa
dc.subject.lembREHABILITACION MEDICAspa
dc.publisher.departmentFacultad de Ingenieríadspa
dc.type.localTrabajo de gradospa
dc.description.abstractenglishKnee injuries are frequent in people of all ages. In all cases, physical therapy is prescribed to recover strength, and range of motion. Robotic assistive devices are gaining the attention of the community and aim to improve the patients’ quality of life. In this paper, we propose a 5-bars-linkage knee rehabilitation device. We are interested in obtaining the complete dynamic model of the proposed rehabilitation system, in order to develop and evaluate adequate control strategies in future work. With this purpose, we present the kinematics formulation of the device and then, we derive the dynamics using two approaches, in order to validate the model; i.e. we obtain the motion equation using Lagrange approach and an algebraic method which simplifies the modeling. These models are simulated and compared with the physical behavior of the system, showing the functionality of the system and the validity of the models when performing a rehabilitation routine.eng
dc.title.translatedKinematic and dynamic modeling of a 5-bar assistive device for knee rehabilitationspa
dc.subject.keywordsRobotics assistive rehabilitation devicespa
dc.subject.keywordsKinematicsspa
dc.subject.keywordsDynamics modelingspa
dc.publisher.programIngeniería en Mecatrónicaspa
dc.creator.degreenameIngeniero en Mecatrónicaspa
dc.description.degreelevelPregradospa
dc.publisher.facultyIngeniería - Ingeniería en Mecatrónicaspa
dc.type.dcmi-type-vocabularyTextspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadasspa
dc.relation.referencesJ. Gerstner B. Manual de semiología del aparato locomotor. Universidad del Valle, 2004.spa
dc.relation.referencesM. Balbastre and M. Hervás. Patología de la rodilla guía de manejo clínico, 2011.spa
dc.relation.referencesFerdinand P.Beer. Vector Mechanics for Engineers:Statics and Dynamics. McGraw-HillScience/Engineering/Math,2003.spa
dc.relation.referencesRA. Chaurand, LRP. León, and ELG Muñoz. Dimensiones antropométricas de población latinoamericana: México, cuba, colombia, chile. Technical report, Universidad de Guadalajara, Centro Universitario de Arte, Arquitectura y Diseño, División de Tecnología y Procesos, Departamento de Producción y Desarrollo. Centro de Investigaciones en Ergonomía., 2001.spa
dc.relation.referencesJ. Figueiredo, P. Flix, C.P. Santos, and J.C. Moreno.Towards human- knee orthosis interaction based on adaptive impedance control through stiffness adjustment. In 2017 International Conference on Rehabilitation Robotics (ICORR), pages 406–411, July 2017.spa
dc.relation.referencesManolo Garabini, Cosimo Della Santina, Matteo Bianchi, Manuel Catalano, Giorgio Grioli,and Antonio Bicchi. Soft Robots that Mimic the Neuromusculoskeletal System, pages 259–263. Springer International Publishing, Cham, 2017.spa
dc.relation.referencesW.Huo, S.Mohammed, J.C.Moreno, and Y. Amirat. Lower limb wearable robots for assistance and rehabilitation: A state of the art. IEEE Systems Journal, 10(3):1068–1081, Sept 2016.spa
dc.relation.referencesNestle Nutrition Institute. Cribado Nutricional. Guía para rellenar el formulario Mini Nutricional Assessment, first edition, 2015.spa
dc.relation.referencesA. Koller-Hodac, D. Leonardo, S. Walpen, and D. Felder. A novel robotic device for knee rehabilitation improved physical therapy through automated process. In 2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, pages 820–824, Sept 2010.spa
dc.relation.referencesS. Mghames, M. Laghi, C. Della Santina, M. Garabini, M. Catalano, G Grioli, and A. Bicchi. Design,control and validation of the variable stiffness exoskeleton flexo. In 2017 International Conference on Rehabilitation Robotics(ICORR), pages 539–546, July2017.spa
dc.relation.referencesH. Rifai, S. Mohammed, K. Djouani, and Y. Amirat.Toward lower limbs functional rehabilitation through a knee-joint exoskeleton. IEEE Transactions on Control Systems Technology, 25(2):712–719, March 2017.spa
dc.relation.referencesMarianne L. Romero A., Yair Valbuena, Alexandra Velasco, and Leonardo Solaque. Soft-actuated modular knee-rehabilitation device: Proof of concept. In Proceedings of the International Conference on Bioinformatics Research and Applications 2017, ICBRA 2017,pages 71–78, NewYork, NY, USA, 2017. ACM.spa
dc.relation.referencesA. M. Saba, A. Dashkhaneh, M. M. Moghaddam, and M. D. Hasankola. Design and manufacturing of a gait rehabilitation robot.In 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pages 487–491, Feb 2013.spa
dc.relation.referencesHui Shan, Chong Jiang, Yuliang Mao, and X. Wang. Design and control of a wearable active knee orthosis for walking assistance. In 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC), pages 51–56, April 2016.spa
dc.relation.referencesM. K. Shepherd and E.J. Rouse. Design and validation of a torque- controllable knee exoskeleton for sit-to-stand assistance. IEEE/ASME Transactions on Mechatronics, 22(4):1695–1704, Aug 2017.spa
dc.relation.referencesBruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: Modelling, Planning and Control. Springer Publishing Company,Incorporated,1st edition, 2008.spa
dc.relation.referencesLeonardo Solaque, Marianne Romero, and Alexandra Velasco. Knee rehabilitation device with soft actuation: an approach to the motion control. In Proceedings of ICINCO, 2018.spa
dc.relation.referencesHstar Technologies. RehaBot. http://www.hstartech.com/index.php/ research/rehabot.html, 2005. [Online;accessed20-Aug-2017].spa
dc.relation.referencesPersonal Sanitario Umivale. Patología de la rodilla: Guía de manejo clínico, 2011.spa
dc.relation.referencesB. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D. G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, L. C. Visser, and S. Wolf. Variable impedance actuators: A review. Robotics and Autonomous Systems, 61(12):1601 –1614,2013.spa
dc.relation.referencesT. Vouga, K. Z. Zhuang, J. Olivier, M. A. Lebedev, M. A. L. Nicolelis, M. Bouri, and H. Bleuler. Exio: A brain-controlled lower limb exoskeleton for rhesus macaques. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2):131–141, Feb 2017.spa
dc.relation.referencesHongnian Yu. Modeling and control of hybrid machine systems— a five-bar mechanism case. International Journal of Automation and Computing, 3(3):235–243, Jul 2006.spa
dc.subject.proposalDispositivo robótico de rehabilitación asistencialspa
dc.subject.proposalCinemáticaspa
dc.subject.proposalModelado dinámicospa
dc.publisher.grantorUniversidad Militar Nueva Granadaspa


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Militar Nueva Granada, 2019
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Militar Nueva Granada, 2019