Show simple item record

dc.contributor.advisorRiaño Pérez, Felipe Alfredospa
dc.contributor.authorLópez Pulido, Albeiro Antoniospa
dc.contributor.otherRayo, Lorenaspa
dc.coverage.spatialCalle 100spa
dc.description.abstractSe elaboró un modelo digital tridimensional (3D) de un afloramiento de rocas sedimentarias del Grupo Guadalupe en la Cordillera Oriental de Colombia, mediante la captura de imágenes aéreas utilizando un vehículo aéreo no tripulado (VANT), con el fin de realizar su caracterización estructural. Para esto, se usó un software especializado para el modelado e interpretación de información tridimensional. Se obtuvieron 62 datos estructurales, 30 de estos corresponden a estratificación, y 32 a familias de fracturas. Se encontró que la secuencia sedimentaria buza uniformemente hacia el occidente (288/59, dirección de buzamiento/buzamiento), y presenta tres familias de fracturas principales: familia 1 (84/70), familia 2 (192/76) y familia 3 (38/62). Este estudio demuestra la utilidad de aplicación de técnicas de percepción remota al campo de las
dc.publisherUniversidad Militar Nueva Granadaspa
dc.rightsDerechos Reservados - Universidad Militar Nueva Granada, 2019spa
dc.titleCaracterización estructural de afloramientos rocosos mediante herramientas de percepción remotaspa
dc.publisher.departmentFacultad de Ingenieríaspa
dc.type.localTrabajo de gradospa
dc.description.abstractenglishA three-dimensional (3D) digital model of an outcrop of sedimentary rocks of the Guadalupe Group in the Eastern Cordillera of Colombia was elaborated, by capturing images of an unmanned aerial vehicle (UAV), in order to carry out its structural characterization. For this, specialized software was used for modelling and interpretation of three-dimensional information. 62 structural data were obtained, 30 of these corresponding to stratification, and 32 to sets of fractures. It was found that the sedimentary sequence dip uniformly towards the west (288/59, direction of dip / dip), and presents three sets of major fractures: set 1 (84/70), set 2 (192/76) and set 3 (38/62). This study demonstrates the usefulness of remote sensing techniques in the field of geosciences.eng
dc.title.translatedStructural characterization of outcrops with remote perception toolsspa
dc.subject.keywordsStructural geologyspa
dc.subject.keywordsVirtual outcropspa
dc.publisher.programEspecialización en Geomáticaspa
dc.creator.degreenameEspecialista en Geomáticaspa
dc.publisher.facultyIngeniería - Especialización en Geomáticaspa
dc.relation.referencesBellian, J. A., Kerans, C., & Jennette, D. C. (2005). Digital Outcrop Models: Applications of Terrestrial Scanning Lidar Technology in Stratigraphic Modeling. Journal of Sedimentary Research, 75(2), 166–176.
dc.relation.referencesBuckley, S. J., Enge, H. D., Carlsson, C., & Howell, J. A. (2010). Terrestrial laser scanning for use in virtual outcrop geology. Photogrammetric Record, 25(131), 225–239.
dc.relation.referencesBuckley, S. J., Howel, J. A., Enge, H. D., & Kurz, T. H. (2008). Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165(3), 625–638.
dc.relation.referencesCawood, A., & Bond, C. (2018). eRocK: an oline, open-access repostory of virtual outcrops and geological samples in 3D. Geophysical Research Abstracts, 20. Recuperado de www.e-rock.orgspa
dc.relation.referencesCorradetti, A. (2016). 3D structural characterization of outcrops by means of close-range multi-view stereo-photogrammetry (University of Naples Federico II). Recuperado de
dc.relation.referencesFavalli, M., Fornaciai, A., Isola, I., Tarquini, S., & Nannipieri, L. (2012). Multiview 3D reconstruction in geosciences. Computers and Geosciences, 44, 168–176.
dc.relation.referencesGarcía-Sellés, D., Falivene, O., Arbués, P., Gratacos, O., Tavani, S., & Muñoz, J. A. (2011). Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning. Computers and Geosciences, 37(10), 1584–1594.
dc.relation.referencesGroshong, R. H. (2006). 3-D Structural Geology : a Practical Guide to Surface and Subsurface Map Interpretation (Second edi).
dc.relation.referencesHaneberg, W. C. (2008). Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bulletin of Engineering Geology and the Environment, 67(4), 457–469.
dc.relation.referencesHaneberg, W. C., Norrish, N. I., & Findley, D. P. (2006). Digital Outcrop Characterization for 3-D Structural Mapping and Rock Slope Design Along Interstate 90 Near Snoqualmie Pass, Washington. Proceedings 57th Annual Highway Geology Symposium, 1–14. Recuperado de Outcrop Characterizati.pdfspa
dc.relation.referencesHodgetts, D. (n.d.). VRGeoscience (Computer software). Recuperado de
dc.relation.referencesHodgetts, D., Gawthorpe, R. L., Wilson, P., & Rarity, F. (2007). Integrating Digital and Traditional Field Techniques Using Virtual Reality Geological Studio (VRGS). 69th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2007.
dc.relation.referencesHodgetts, D. (2011). Quantitative geology from digital outcrop data for the characterisation of hydrocarbon reservoirs. Geophysical Research Abstracts, 13, 4065–4065. Recuperado de
dc.relation.referencesIngeominas. (2008). Geología de la Plancha 228 Sanfatfé de Bogotá Noreste. Escala
dc.relation.referencesJones, R. R., Pringle, J. K., McCaffrey, K. J. W., Inber, J., Wightman, R. H., Guo, J., & Long, J. J. (2011). Extending Digital Outcrop Geology into the Subsurface. In A. J. Martinsen, Ole J. Pulham & M. D. Haughton, Peter D.W. Sullivan (Eds.), Outcrops Revitalized: Tools, Techniques and Applications (Vol. 10, pp. 31–50).
dc.relation.referencesJones, R. R., Wawrzyniec, T. F., Holliman, N. S., McCaffrey, K. J. W., Imber, J., & Holdsworth, R. E. (2008). Describing the dimensionality of geospatial data in the earth sciences—Recommendations for nomenclature. Geosphere, 4(2), 354.
dc.relation.referencesKurz, T. H., Dewit, J., Buckley, S. J., Thurmond, J. B., Hunt, D. W., & Swennen, R. (2012). Hyperspectral image analysis of different carbonate lithologies (limestone, karst and hydrothermal dolomites): The Pozalagua Quarry case study (Cantabria, North-west Spain). Sedimentology, 59(2), 623–645.
dc.relation.referencesMcCaffrey, K. J. W., Jones, R. R., Holdsworth, R. E., Wilson, R. W., Clegg, P., Imber, J., … Trinks, I. (2005). Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. Journal of the Geological Society, 162(6), 927–938.
dc.relation.referencesMenichetti, M., Piacentini, D., De Donatis, M., & Tirincanti, E. (2016). Virtual Outcrop And 3D Structural Analysis Of Monte Vettore Extensional Active Faults. Conference: 35° Convegno Gruppo Nazionale Di Geofisica Della Terra Solida, 64–67. Recuperado de
dc.relation.referencesMinisini, D., Wang, M., Bergman, S. C., & Aiken, C. (2014). Geological data extraction from lidar 3-D photorealistic models: A case study in an organic-rich mudstone, Eagle Ford Formation, Texas. Geosphere, 10(3), 610–626.
dc.relation.referencesPringle, J. K., Clark, J. D., Westerman, A. R., Stanbrook, D. A., Gardiner, A. R., & Morgan, B. E. F. (2001). Virtual outcrops: 3-D reservoir analogues. Journal of the Virtual Explorer, 4(9).
dc.relation.referencesRagan, D. (2009). Structural Geology: An Introduction to Geometrical Techniques (Fourth edi). Cambridge University
dc.relation.referencesTavani, S., Granado, P., Corradetti, A., Girundo, M., Iannace, A., Arbués, P., … Mazzoli, S. (2014). Building a virtual outcrop, extracting geological information from it, and sharing the results in Google Earth via OpenPlot and Photoscan: An example from the Khaviz Anticline (Iran). Computers and Geosciences, 63, 44–53.
dc.relation.referencesWoodcock, N. H. (1976). The Accuracy of Structural Field Measurements. The Journal of Geology, 84(3), 350–355.
dc.relation.referencesXu, X., Aiken, C. L. V., Bhattacharya, J. P., Corbeanu, R. M., Nielsen, K. C., McMechan, G. A., & Abdelsalam, M. G. (2000). Creating virtual 3-D outcrop. The Leading Edge, 19(2), 197–202.
dc.relation.referencesXu, X., Aiken, C. L. V., & Nielsen, K. C. (1999). Real time and the virtual outcrop improve geological field mapping. Eos, Transactions American Geophysical Union, 80(29), 317,322-324.
dc.subject.proposalAfloramiento virtualspa
dc.subject.proposalGeología estructuralspa

Files in this item


This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Militar Nueva Granada, 2019
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Militar Nueva Granada, 2019