Mostrar el registro sencillo del ítem

dc.creatorRincon Ramirez, Maribet
dc.creatorRincon Lizardo, Nancy
dc.creatorMata Alvarez, Joan
dc.creatorChirinos, Ivan
dc.date2014-06-01
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/6
dc.identifier10.18359/rcin.6
dc.descriptionThis research examined the anaerobic digestion of prepared food waste (PFW) in a complete mix anaerobic reactor (CMAR) with a useful volume of 3.5 L, with discontinuous flow under mesophilic conditions (MC) at 37 ºC and thermophilic conditions (TC) at 55 ºC. Its objective was to evaluate the biodegradability of PFW with different biological sludge and hydraulic retention times (HRT). Prior to degradation, a biodegradability test was performed with different proportions of carbohydrates (C), fruits and vegetables (FV), and proteins (P). This test showed that the highest production of biogas was obtained by working with the proportion C:FV:P 24:71:5 in MC and TC. This proportion was digested in the CMAR with HRT of 30, 25 and 15 days in MC and TC. For the MC, ST removals of 59 % and 67 % were obtained, and VS removals of 76 % and 81 % were obtained for 30 and 25 days-HRT, with methane yields of 0.64 L/gVSremoved and 0.31 L/gVSremoved. In the 15 day-HRT, an instability was registered due to CO2 concentrations of 60 %. During the TC (30 days-HRT), 67 % of TS were removed, 80 % of VS were removed, and methane yields of 0.58 L/gVSremoved were recorded. When the 25-days HRT was applied, the VFA increased until 2916 mg/L and the treatment was stopped. The best removals and biogas production were generated during the HRT of 30 d in MC with CACHAZA EFFLUENT sludge.en-US
dc.descriptionEn esta investigación se realizó la digestión anaeróbica de residuos de alimentos preparados (RAP) en un reactor anaeróbico de mezcla completa (RAMC) de 3,5 L, con flujo discontinuo bajo condiciones mesofílicas (CM) a 37 ºC y termofílicas (CT) a 55 °C. El objetivo fue evaluar la biodegradabilidad de RAP con distintos lodos biológicos y tiempos de retención hidráulicos (TRH). Antes de la degradación, se realizó un ensayo de biodegradabilidad con diferentes proporciones de carbohidratos (C) frutas y vegetales (FV) y proteínas (P) en el que se obtuvo una mayor producción de biogás al trabajar con la proporción C:FV:P 24:71:5 en CM y CT. La misma se utilizó en el RAMC con TRH de 30, 25 y 15 d en CM y CT. Para la CM se obtuvieron remociones en ST de 59 % y 67 %, SV de 76 % y 81 % para los TRH de 30 y 25 d, con producciones de metano de 0,64 L/gSVremovido y 0,31 L/gSVremovido. Durante el TRH de 15 d se registró una inestabilidad debido a concentraciones de CO2 del 60 %. Durante la CT (TRH de 30 d) se removieron 67 % de ST, 80 % de SV y se registraron producciones de metano de 0,58 L/gSVremovido. Cuando se implementó el TRH de 25 d se incrementaron los ácidos grasos volátiles hasta 2916 mg/L y se detuvo el tratamiento. Las mejores remociones y producción de biogás se generaron durante el TRH de 30 d en CM con el lodo EFLUENTE CACHAZA.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.languagespa
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/6/4
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/6/1814
dc.relation/*ref*/De Baere, L. (2000). Anaerobic digestion of solid waste: state-of-the art. Water Science and Technology, 41, pp. 283-290.
dc.relation/*ref*/Lu, J., Gavala, H., & Skiadas, I. (2008). Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step. Journal of Environmental Management, 88, pp. 881-889. http://dx.doi.org/10.1016/j.jenvman.2007.04.020
dc.relation/*ref*/De la Rubia, M., Pérez, M., Romero, L., & Sales, D. (2001). Digestión anaerobia termofílica versus digestión anaerobia mesofílica de lodos de EDAR. Residuos, 11(62), pp. 64-68.
dc.relation/*ref*/Lloret, E., Pastor, L., Pradas, P., & Pascual, J. (2013). Semi full-scale thermophilic anaerobic digestion (TAnD) for advanced treatment of sewage sludge: Stabilization process and pathogen reduction. Chemical Engineering Journal, 232, pp. 42-50. http://dx.doi.org/10.1016/j.cej.2013.07.062
dc.relation/*ref*/Environment Protection Agency (EPA). (2010). Municipal solid waste in the United States: 2009 Facts and figures EPA530-R-10-012. Washington, D.C. EE.UU., p. 198.
dc.relation/*ref*/Sosnowski, P., Wieczorek, S., & Ledakowicz. (2003). Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in Environmental Research, 7, pp. 609-616. http://dx.doi.org/10.1016/S1093-0191(02)00049-7
dc.relation/*ref*/Azcón, B. & Talón, M. (2000). Fundamentos de Fisiología Vegetal (Primera Edición). Madrid, Espa-a: McGraw Hill. P. 522.
dc.relation/*ref*/Zhanga, L., Ouyanga, W. & Lia, A. (2012). Essential role of trace elements in continuous anaerobic digestion of food waste. Procedia Environmental Sciences, 16, pp. 102-111. http://dx.doi.org/10.1016/j.proenv.2012.10.014
dc.relation/*ref*/Li, R., Chen, S, & Li, X. (2010). Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system. Appl Biochem Biotechnol, 160, pp. 643-654. http://dx.doi.org/10.1007/s12010-009-8533-z
dc.relation/*ref*/American Public Health Association (APHA). American Water Works Association (AWWA) & Water Environment Federation (WEF). (1998). Standard methods for the examination of water and wastewater (20th Edition). Washington, D.C., EE. UU.: American Public Health Association.
dc.relation/*ref*/Van Reeuwijk, L.P. (Ed.). (1993). Procedures for soil analysis (4th Edition). Technical paper No. 9. Wageningen, Países Bajos: International Soil Reference and Information Center (ISRIC).
dc.relation/*ref*/Guerrero, L. & Montalvo, S. (2003). Tratamiento anaerobio de residuos. Valparaíso, Chile: Talleres Gráficos Fermín Pastén, p. 413.
dc.relation/*ref*/Elango, D., Pulikesi, M., Baskaralingam, P., Ramamurthi, V. & Sivanesan, S. (2007). Production of biogas from municipal solid waste with domestic sewage. Journal of Hazardous Materials, 141 (1), pp. 301-304. http://dx.doi.org/10.1016/j.jhazmat.2006.07.003
dc.relation/*ref*/Scaglione, D., Caffaz, S., Ficara, E., Malpei, F. & Lubello, C. (2008). A simple method to evaluate the short-term biogas yield in anaerobic codigestion of WAS and organic wastes. Water Science & Technology, 59 (8), pp. 1615-1622. http://dx.doi.org/10.2166/wst.2008.502
dc.relation/*ref*/Akunna, J., Abdullahi, Y. & Stewart, N. (2007). Anaerobic digestion of municipal solid wastes containing variable proportions of waste types. Water Science & Technology, 56 (8), pp. 143-149. http://dx.doi.org/10.2166/wst.2007.725
dc.relation/*ref*/PROSAB. (1999). Tratamento de Esgotos Sanitarios por Processo Anaerobio e Disposicao Controlada no solo (Primera Edición). Rio de Janeiro, Brasil: PROSAB, p. 411.
dc.relation/*ref*/Bouallagui, H., Haouari, O., Touhami, Y., Ben Cheikh, R., Marouani, L. & Hamdi, M. (2004). Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Process Biochemistry, 39, pp. 2143-2148. http://dx.doi.org/10.1016/j.procbio.2003.11.022
dc.relation/*ref*/Bouallagui, H., Lahdheb, H., Ben Romdan, E., Rachdi, B. & Hamdi, M. (2009). Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management, 90, pp. 1844-1849. http://dx.doi.org/10.1016/j.jenvman.2008.12.002
dc.relation/*ref*/Forster-Carneiro, T., Pérez, M., Romero, L. & Sales, D. (2007). Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: Focusing on the inoculum sources. Bioresource technology, 98, pp. 3195-3203. http://dx.doi.org/10.1016/j.biortech.2006.07.008
dc.relation/*ref*/Mohan, S. & Bindhu, B. (2008). Effect of phase separation on anaerobic digestion of kitchen waste. J. Environ. Eng. Sci. 7, pp. 91-103. http://dx.doi.org/10.1139/S07-039
dc.relation/*ref*/Angelidakia, I., Chen, X. Cui, J., Kaparaju, P. & Ellegaard, L. (2006). Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: Start-up procedure for continuously stirred tank reactor. Water Research, 40, pp. 2621-2628. http://dx.doi.org/10.1016/j.watres.2006.05.015
dc.relation/*ref*/Bouallagui, H., Touhami, Y., Ben Cheikh, R. & Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40, pp. 989-995. http://dx.doi.org/10.1016/j.procbio.2004.03.007
dc.relation/*ref*/Gómez, X., Cuetos, M., Cara, J., Morán, A. & García, A. (2006). Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes Conditions for mixing and evaluation of the organic loading rate. Renewable Energy, 31, pp. 2017-2024. http://dx.doi.org/10.1016/j.renene.2005.09.029
dc.rightsDerechos de autor 2016 Ciencia e Ingeniería Neogranadinaes-ES
dc.sourceCiencia e Ingenieria Neogranadina; Vol. 24 No. 1 (2014); 29-48en-US
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 24 Núm. 1 (2014); 29-48es-ES
dc.sourceCiencia e Ingeniería Neogranadina; v. 24 n. 1 (2014); 29-48pt-BR
dc.source1909-7735
dc.source0124-8170
dc.subjectAnaerobic reactoren-US
dc.subjectfood wasteen-US
dc.subjectbiodegradability.en-US
dc.subjectReactor anaeróbicoes-ES
dc.subjectresiduos de alimentoses-ES
dc.subjectbiodegradabilidad.es-ES
dc.titleBiodegradability of prepared food waste under mesophilic and thermophilics conditions using a complete mix anaerobic reactor.en-US
dc.titleBiodegradabilidad de residuos de alimentos preparados bajo condiciones mesofílicas y termofílicas utilizando un reactor anaeróbico de mezcla completa.es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem