Show simple item record

dc.contributor.authorCalvache, Juan Felipe
dc.contributor.authorPérez, Sergio Andrés
dc.contributor.authorMoreno, Francisco Javier
dc.descriptionIn this paper we propose a model to quantify the degree of affinity among the individuals of a human group. To obtain the degree of affinity, our model considers a set of factors and a set of rules (for each factor) which are defined by the analyst. Our model can be virtually applied to any human group: students, employees, members of a social network, etc. To validate and show the expediency of our model, we analyzed two groups of university courses. The students’ data, corresponding to the factors identified for the experiments, were collected using a survey that was designed for this purpose. Although more extensive experiments are required, our results showed possible patterns, e.g., the groups of students with higher affinity were the groups with the highest average grades. It was also noted that there are certain individuals who tend to be members of the higher affinity groups and some who tend to be members of the lowest affinity groups.  eng
dc.descriptionEn este artículo se propone un modelo para cuantificar el grado de afinidad entre los individuos de un grupo humano. Para obtener el grado de afinidad se considera un conjunto de factores y de reglas (para cada factor) definidos por el analista. El modelo se puede aplicar prácticamente a cualquier grupo humano: estudiantes, trabajadores, miembros de una red social, etc. Para validar y mostrar la utilidad del modelo, se analizaron dos grupos de estudiantes de cursos universitarios. Los datos de los estudiantes, correspondientes a los factores definidos para los experimentos, se recopilaron mediante una encuesta que fue diseñada para tal efecto. Aunque se requieren experimentos más exhaustivos, los resultados evidenciaron posibles patrones; e.g., los grupos de estudiantes con mayor grado de afinidad fueron los de mayor calificación promedio grupal. También se observó que existen ciertos individuos que tienden a ser miembros de los grupos más afines y otros que tienden a ser miembros de los grupos menos afines. spa
dc.publisherUniversidad Militar Nueva Granadaspa
dc.rightsDerechos de autor 2016 Ciencia e Ingeniería Neogranadinaspa
dc.sourceCiencia e Ingenieria Neogranadina; Vol 25 No 2 (2015); 117-136eng
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 25 Núm. 2 (2015); 117-136spa
dc.sourceCiencia e Ingeniería Neogranadina; v. 25 n. 2 (2015); 117-136por
dc.titleA model based on factors and rules to quantify the affinity among the individuals of a human groupeng
dc.titleModelo basado en factores y reglas para cuantificar la afinidad entre los individuos de un grupo humanospa
dc.relation.references/*ref*/Molina, F., Loyola, P., Velásquez, J. D., (2010). Generación de equipos de trabajo mediante análisis de redes sociales e identificación de atributos personales. En: Revista Ingeniería de Sistemas, Vol. 14 (1), pp. 103-122.
dc.relation.references/*ref*/Panigrahy, R., Najork, M., Xie, Y. (2012). How User Behavior is Related to Social Affinity. En: 5th ACM International Conference on Web Search and Data Mining (WSDM).
dc.relation.references/*ref*/Bapna, R., Gupta, A., Rice, S., Sundararajan, A. (2011). Trust, Reciprocity and the Strength of Social Ties: An Online Social Network based Field Experiment. En: Conference on Information Systems and Technology (CIST).
dc.relation.references/*ref*/Chung-Chien, H., Medhin, N. (2006). Positive and Negative Affinities Model For Social Networks. En: Department of Mathematics, 3rd International Conference on Neural, Parallel and Scientific Computations.
dc.relation.references/*ref*/Smith, M., Giraud-Carrier, C., Purser, N. (2009). Implicit affinity networks and social capital. En: Journal Information Technology and Management, Vol. (2-3), pp. 123-134.
dc.relation.references/*ref*/Gil, J. (2007). La idónea agrupación de trabajadores según grados de compatibilidad psicológica. En: Asociación Espa-ola de Dirección y Economía de la Empresa (Aedem).
dc.relation.references/*ref*/Eaglea, N., Pentlandb, A., Lazerc, D. (2009). Inferring friendship network structure by using mobile phone data MIT Media Laboratory. En: Proceedings of the National Academy of Sciences of the United States of America PNAS, Vol. 106 (36), pp. 15274-15278.
dc.relation.references/*ref*/Zhang, H., Dantu, R. (2010). Predicting Social Ties in Mobile Phone Networks. En: IEEE International Conference on Intelligence and Security Informatics ISI.
dc.relation.references/*ref*/Bisgaard, S., Kulahci, M. (2011). Time Series Analysis and Forecasting by Example. New Jersey. Wiley.
dc.relation.references/*ref*/Wasserman, S., Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge. Cambridge University Press.
dc.relation.references/*ref*/Kossinets, G., Kleinberg, J. M., Watts, D. J. (2001). The structure of information pathways in a social communication network. En: 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
dc.relation.references/*ref*/Aiken, L. (2003). Test psicológicos y evaluación. México. Prentice Hall.
dc.relation.references/*ref*/Morgeson, M., Reider, F., Campion, M. (2005). Selecting individuals in team settings: The importance of social skills, personality characteristics, and teamwork knowledge. En: Personnel Psychology, Vol. 58 (3), pp. 583-611.
dc.relation.references/*ref*/Fershtman, C., Gneezy, U. (2001). Discrimination in a Segmented Society: An Experimental Approach. En: Quarterly Journal of Economics, Vol. 115 (3), pp. 351-377.
dc.relation.references/*ref*/Kempe, D., Kleinberg, J. M., Tardos, E. (2003). Maximizing the spread of influence through a social network. En: 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
dc.relation.references/*ref*/Leskovec, J., Rajaraman, A., Ullman, J. D. (2014). Mining of Massive datasets. Cambridge University Press.
dc.relation.references/*ref*/Gompers, P., Mukharlyamov, V. (2015). The Cost of Friendship. En: Journal of Financial Economics, aceptado para publicación.
dc.relation.references/*ref*/Kim, M., Park, S. O. (2013). Group affinity based social trust model for an intelligent movie recommender system. En: Multimedia Tools and Applications, Vol. 64, pp. 505-516.
dc.relation.references/*ref*/Rao, D., Yarowsky, D., Callison-Burch, C.;(2008). Affinity measures based on the graph Laplacian. En: Proceedings of the 3rd TextGraphs Workshop on Graph-based Algorithms for NLP, pp. 41-48.
dc.relation.references/*ref*/Liu, H., Yang, X., Latecki, L. J., Yan, S. (2012). Dense neighborhoods on affinity graph. International Journal of Computer Vision, Vol. 98 (1), pp. 65-82.
dc.subject.proposalhuman groupseng
dc.subject.proposalsocial networkseng
dc.subject.proposalsocial relationships.eng
dc.subject.proposalgrupos humanosspa
dc.subject.proposalredes socialesspa

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record