Show simple item record

dc.creatorGarcía Mariaca, Alexander
dc.creatorCendales Ladino, Edwin Darío
dc.creatorEslava Sarmiento, Andrés Felipe
dc.date2016-04-30
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/1626
dc.identifier10.18359/rcin.1626
dc.descriptionIn this review article focuses on the use of ethanol in MCI-EP are presented with a brief description of the methods of producing ethanol, later to exam deeply about performance, combustion and emissions MCI-EP operating with different mixtures of various mixtures of ethanol and conventional gasoline. The results obtained by various authors who have done experimentation on MCI-EP evaluating parameters such as torque, power, BMEP, and the regulated emissions (NOx, HC, CO, CO2 and PM) are presented. It was established that ethanol is an excellent fuel to be used in mixture, especially in relations upper to E20; since it improves engine performance parameters, however generates increases of some pollutants such NOx due to increased temperature during combustion of ethanol in MCI.en-US
dc.descriptionEn este artículo se presenta una revisión bibliográfica acerca del uso de etanol como combustible en motores de combustión interna de encendido provocado (MCI-EP). Este empieza por una breve descripción de las diversas formas de producción y principales productores en el mundo de etanol, para posteriormente profundizar en el desempeño, combustión y las emisiones en MCIEP al operar con diferentes mezclas de etanol y gasolina convencional. Los resultados obtenidos por los diferentes autores de los parámetros de desempeño, combustión y emisiones, como potencia, torque, presión media efectiva al freno (BME), eficiencia térmica, tasa de liberación de calor, eficiencia de combustión, presión en la cámara de combustión y emisiones reguladas (NOx, THC, CO, CO2 y MP), muestran que el etanol es un excelente comburente para utilizarse en mezcla con gasolina, especialmente en relaciones superiores al 20 % en volumen (E20); debido a que se produce un mejor proceso de combustión causado por el aumento en la cantidad de oxígeno, y se logran así mejoras en los parámetros de desempeño y emisiones del MCI, tales como incrementos en la potencia y la eficiencia térmica y disminución de las emisiones de CO y THC. Sin embargo, se generan aumentos en algunas emisiones contaminantes, como el CO2 y los NOx causados por el exceso de oxígeno en la combustión y el incremento de la temperatura de los gases de escape.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.languagespa
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/1626/1478
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/1626/1761
dc.relation/*ref*/Agarwal, A. K. (2007). Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 33, pp. 233-271. http://dx.doi.org/10.1016/j.pecs.2006.08.003
dc.relation/*ref*/Sadeghinezhad, E., Kazi, S. N., Sadeghinejad, F., Badarudin, A., Mehrali, M., Sadri, R., Reza, M. (2014). A comprehensive literature review of biofuel performance in internal combustion engine and relevant costs involvement. Renewable and Sustainable Energy Reviews, 30, pp. 29-44. http://dx.doi.org/10.1016/j.rser.2013.09.022
dc.relation/*ref*/García, C., Manzini, F., Islas, J. (2010). Air emissions scenarios from ethanol as a gasoline oxygenate in Mexico City Metropolitan Area. Renewable and Sustainable Energy Reviews, 14, pp. 3032-3040. http://dx.doi.org/10.1016/j.rser.2010.07.011
dc.relation/*ref*/Manzetti, S., Andersen, O. (2015). A review of emission products from bioethanol and its blends with gasoline. Background for new guidelines for emission control. Fuel, 140, pp. 293-301. http://dx.doi.org/10.1016/j.fuel.2014.09.101
dc.relation/*ref*/Yüksel, F., Yüksel, B. (2004). The use of ethanol–gasoline blend as a fuel in an SI engine. Renewable Energy, 29, pp. 1181-1191. http://dx.doi.org/10.1016/j.renene.2003.11.012
dc.relation/*ref*/Pourkhesalian, A., Shamekhi, A., Salimi, F. (2010). Alternative fuel and gasoline in an SI engine: A comparative study of performance and emissions characteristics. Fuel, 89, pp. 1056-1063. http://dx.doi.org/10.1016/j.fuel.2009.11.025
dc.relation/*ref*/Al-Hasan, M. (2003). Effect of ethanol unleaded gasoline blends on engine performance and exhaust emission. Energy Conversion and Management, 44, pp. 1547-1561. http://dx.doi.org/10.1016/S0196-8904(02)00166-8
dc.relation/*ref*/Ozsezen, A., Canakci, M. (2011). Performance and combustion characteristics of alcoholegasoline blends at wide-open throttle. Energy, 36, pp. 2747-2752. http://dx.doi.org/10.1016/j.energy.2011.02.014
dc.relation/*ref*/Niven, R. (2005). Ethanol in gasoline: environmental impacts and sustainability review article. Renewable and Sustainable Energy Reviews, 9, pp. 535-555. http://dx.doi.org/10.1016/j.rser.2004.06.003
dc.relation/*ref*/Naik, S. N., Goud, V., Rout, P., Dalai, A. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14, pp. 578-597. http://dx.doi.org/10.1016/j.rser.2009.10.003
dc.relation/*ref*/Sánchez, C., Cardona O. (2007). Fuel ethanol production process design trends and integration opportunities. Bioresource Technology, 98, pp. 2415-2457. http://dx.doi.org/10.1016/j.biortech.2007.01.002
dc.relation/*ref*/Mathewson, S. W. (1980). The Manual for the Home and Farm Production of Alcohol Fuel, Ten Speed Press.
dc.relation/*ref*/Balat, M., Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86, pp. 2273-2282. http://dx.doi.org/10.1016/j.apenergy.2009.03.015
dc.relation/*ref*/Kumar, S., Singh, N., Prasad, R. (2010). Anhydrous ethanol: A renewable source of energy. Renewable and Sustainable Energy Reviews, 14, pp. 1830–1844. http://dx.doi.org/10.1016/j.rser.2010.03.015
dc.relation/*ref*/Surisetty, V., Dalai, A., Kozinski, J. (2011). Alcohols as alternative fuels: An overview. Applied Catalysis A: General, 1, pp. 1-11. http://dx.doi.org/10.1016/j.apcata.2011.07.021
dc.relation/*ref*/Gray, K., Zhao, L., Emptage, M. (2006). Bioethanol. Biocatalysis and biotransformation, 10, pp. 141-146. http://dx.doi.org/10.1016/j.cbpa.2006.02.035
dc.relation/*ref*/Kumar, A., Jones, D. D., Hanna, M. A. (2009). Thermochemical biomass gasification: a review of the current status of the technology. Energies, 2(3), pp. 556-581. http://dx.doi.org/10.3390/en20300556
dc.relation/*ref*/Winther, M., Møller, F., Jensen, T. (2012). Emission consequences of introducing bio ethanol as a fuel for gasoline cars. Atmospheric Environment, 55, pp. 144-153. http://dx.doi.org/10.1016/j.atmosenv.2012.03.045
dc.relation/*ref*/Fedebiocombustibles (2010). En: http://www.fedebiocombustibles.com/notaweb-id-923.htm.
dc.relation/*ref*/Departamento Nacional de Planeación (2008). Lineamientos de politica para promover la produccion sostenible de biocombustibles en Colombia, Conpes 3510. Documento Conpes 3510, Bogotá.
dc.relation/*ref*/Costa, R., Sodré, J. (2011). Compression ratio effects on an ethanol/gasoline fuelled engine performance. Applied Thermal Engineering, 31, pp. 278-283. http://dx.doi.org/10.1016/j.applthermaleng.2010.09.007
dc.relation/*ref*/Yücesu, H., Topgül, T., Cinar, C., Okur, M. (2006). Effect of ethanol–gasoline blends on engine performance and exhaust emissions in different compression ratios. Applied Thermal Engineering, 26, pp. 2272–2278. http://dx.doi.org/10.1016/j.applthermaleng.2006.03.006
dc.relation/*ref*/Hsieh, W., Chen, R., Wu, T., Lin, T. (2002). Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environment, 36, pp. 403-410. http://dx.doi.org/10.1016/S1352-2310(01)00508-8
dc.relation/*ref*/Celik, M. (2008). Experimental determination of suitable ethanol–gasoline blend rate at high compression ratio for gasoline engine. Applied Thermal Engineering, 28, pp. 396-404.http://dx.doi.org/10.1016/j.applthermaleng.2007.10.028
dc.relation/*ref*/Eyidogan, M., Ozsezen, A., Canakci, M., Turkcan, A. (2010). Impact of alcohol-gasoline fuel blends on the performance and combustion characteristics of an SI engine. Fuel, 89, pp. 2713-2720. http://dx.doi.org/10.1016/j.fuel.2010.01.032
dc.relation/*ref*/Costa, R., Sodré, J. (2010). Hydrous ethanol vs. gasoline-ethanol blend: Engine performance and emissions. Fuel, 89, pp. 287-293. http://dx.doi.org/10.1016/j.fuel.2009.06.017
dc.relation/*ref*/Park, Ch., Choi, Y., Kim, Ch., Oh, S., Lim, G., Moriyoshi, Y. (2010). Performance and exhaust emission characteristics of a spark ignition engine using ethanol and ethanol-reformed gas. Fuel, pp. 2118-2125. http://dx.doi.org/10.1016/j.fuel.2010.03.018
dc.relation/*ref*/Zhuang, Y., Hong, G. (2013). Primary investigation to leveraging effect of using ethanol fuel on reducing gasoline fuel consumption. Fuel, pp. 425-431. http://dx.doi.org/10.1016/j.fuel.2012.09.013
dc.relation/*ref*/Balki, M., Sayin, C., Canakci, M. (2014). The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine. Fuel, 115, pp. 901-906. http://dx.doi.org/10.1016/j.fuel.2012.09.020
dc.relation/*ref*/Topgül, T., Yücesu, H., Cinar, C., Koca A. (2006). The effects of ethanol–unleaded gasoline blends and ignition timing on engine performance and exhaust emissions. Renewable Energy, 31, pp. 2534-2542. http://dx.doi.org/10.1016/j.renene.2006.01.004
dc.relation/*ref*/Wu, Ch., Chen, R., Pu, J., Lin, T. (2004). The influence of air–fuel ratio on engine performance and pollutant emission of an SI engine using ethanol–gasolineblended fuels. Atmospheric Environment, 38, pp. 7093-7100. http://dx.doi.org/10.1016/j.atmosenv.2004.01.058
dc.relation/*ref*/Zhang, Z., Wang, T., Jia, M., Wei, Q., Meng, X., Shu, G. (2014). Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation. Fuel, 130, pp. 177-188. http://dx.doi.org/10.1016/j.fuel.2014.04.052
dc.relation/*ref*/Schifter, I., Díaz, L., Gómez, J. P., González, U. (2013). Combustion characterization in a single cylinder engine with mid-levels hydrated ethanol-gasoline blended fuels. Fuel, 103, pp. 292-298. http://dx.doi.org/10.1016/j.fuel.2012.06.002
dc.relation/*ref*/Turner, D., Xu, H., Cracknell, R., Natarajan, V., Chen, X. (2011). Combustion performance of bio-ethanol at various blend ratios in a gasoline direct injection engine. Fuel, 90, pp. 1999-2006. http://dx.doi.org/10.1016/j.fuel.2010.12.025
dc.relation/*ref*/Wua, X., Daniel, R., Tian, G., Xu, H., Huang, Z., Richardson, D. (2011). Dual-injection: The flexible, bi-fuel concept for sparkignition engines fuelled with various gasoline and biofuel blends. Applied Energy, 88, pp. 2305-2314. http://dx.doi.org/10.1016/j.apenergy.2011.01.025
dc.relation/*ref*/Hakan, B. (2005). Experimental and theoretical investigation of using gasoline-ethanol blends in spark-ignition engines. Renewable Energy, 30, pp. 1733-1747. http://dx.doi.org/10.1016/j.renene.2005.01.006
dc.relation/*ref*/Kumar, J., Trivedi, D., Mahara, P., Butola, R. (2013). Performance Study of Ethanol Blended Gasoline Fuel in Spark Ignition Engine. Journal of Mechanical and Civil Engineering, 7(3), pp. 71-78. http://dx.doi.org/10.9790/1684-0737178
dc.relation/*ref*/Canakci, M., Ozsezen, A., Alptekin, E., Eyidogan, M. (2013). Impact of alcoholegasoline fuel blends on the exhaust emission of an SI engine. Renewable Energy, 52, pp. 111-117. http://dx.doi.org/10.1016/j.renene.2012.09.062
dc.relation/*ref*/Heywood, J. (1988). Internal Combustion Engines Fundamentals, McGraw-Hill, pp. 497.
dc.relation/*ref*/Schifter, I., Díaz, L., Rodríguez, R., Gómez, J. P., González, U. (2011). Combustion and emissions behavior for ethanol–gasoline blends in a single cylinder engine. Fuel, 90, pp. 3586-3592. http://dx.doi.org/10.1016/j.fuel.2011.01.034
dc.relation/*ref*/Costagliola, M. A., De Simio, L., Iannaccone, S., Prati, M. V. (2013). Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends. Applied Energy, 111, pp. 1162-1171. http://dx.doi.org/10.1016/j.apenergy.2012.09.042
dc.relation/*ref*/Chen, L., Stone, R., Richardson, D. (2012). A study of mixture preparation and PM emissions using a direct injection engine fuelled with stoichiometric gasoline/ethanol blends. Fuel, 96, pp. 120-130. http://dx.doi.org/10.1016/j.fuel.2011.12.070
dc.relation/*ref*/He, B., Wang, J., Hao, J., Yan, X., Xiao, J. (2003). A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels. Atmospheric Environment, 37, pp. 949-957. http://dx.doi.org/10.1016/S1352-2310(02)00973-1
dc.relation/*ref*/Gravalos, I., Moshou, D., Gialamas, T., Xyradakis, P., Kateris, D., Tsiropoulos, Z. (2013). Emissions characteristics of spark ignition engine operating on lowerehigher molecular mass alcohol blended gasoline fuels. Renewable Energy, 50, pp. 27-32. http://dx.doi.org/10.1016/j.renene.2012.06.033
dc.relation/*ref*/Graham, L., Belisle, S., Baas, C. (2008). Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmospheric Environment, 42, pp. 4498-4516. http://dx.doi.org/10.1016/j.atmosenv.2008.01.061
dc.relation/*ref*/Tavares, R., Sthel, M. S., Campos, L. S., Rocha, M. V., Lima, G. R., da Silva, M. G., Vargas H. (2011). Evaluation of Pollutant Gases Emitted by Ethanol and Gasoline Powered Vehicles. Procedia Environmental Sciences, 4, pp. 51-60. http://dx.doi.org/10.1016/j.proenv.2011.03.007
dc.relation/*ref*/Ghazikhani, M., Hatami, M., Safari, B., Ganji, D. (2014). Experimental investigation of exhaust temperature and delivery ratio effect on emissions and performance of agasoline–ethanol twostroke engine. Case Studies in Thermal Engineering, 2, pp. 82-90. http://dx.doi.org/10.1016/j.csite.2014.01.001
dc.relation/*ref*/Karavalakis, G., Durbin, T., Shrivastava, M., Zheng, Z., Villela, M., Jung, H. (2012). Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline lightduty vehicles. Fuel, 93, pp. 549-558. http://dx.doi.org/10.1016/j.fuel.2011.09.021
dc.relation/*ref*/Poulopoulos, S. G., Samaras, D. P., Philippopoulos, C. J. (2001). Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels. Atmospheric Environment, 35, pp. 4399-4406. http://dx.doi.org/10.1016/S1352-2310(01)00248-5
dc.relation/*ref*/Lee, H., Myung, Ch., Park, S. (2009). Time-resolved particle emission and size distribution characteristics during dynamic engine operation conditions with ethanol-blended fuels. Fuel, 88, pp. 1680-1686. http://dx.doi.org/10.1016/j.fuel.2009.03.007
dc.relation/*ref*/Turns, S. R. (2000). An introduction to combustion: Concepts and applications, Mc Graw Hill.
dc.relation/*ref*/Esarte, C., Abián, M., Millera, Á., Bilba, R., Alzueta, M. U. (2012). Gas and soot products formed in the pyrolysis of acetylene mixed with methanol, ethanol, isopropanol or n-butanol. Energy, 43, pp. 37-46. http://dx.doi.org/10.1016/j.energy.2011.11.027
dc.rightsDerechos de autor 2016 Ciencia e Ingeniería Neogranadinaes-ES
dc.sourceCiencia e Ingenieria Neogranadina; Vol. 26 No. 1 (2016); 75-96en-US
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 26 Núm. 1 (2016); 75-96es-ES
dc.sourceCiencia e Ingeniería Neogranadina; v. 26 n. 1 (2016); 75-96pt-BR
dc.source1909-7735
dc.source0124-8170
dc.subjectEthanolen-US
dc.subjectICEen-US
dc.subjectemissionsen-US
dc.subjectperformanceen-US
dc.subjectcombustionen-US
dc.subjectetanoles-ES
dc.subjectMCIes-ES
dc.subjectemisioneses-ES
dc.subjectdesempeñoes-ES
dc.subjectcombustiónes-ES
dc.titleInternal combustion engines (ICE) fuelled usign ethanol-gasoline blends: Reviewen-US
dc.titleMotores de combustión interna (MCI) operando con mezclas de etanol gasolina: revisiónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record