Show simple item record

dc.contributor.authorGarzón Posada, Andrés Orlando
dc.contributor.authorLandínez Téllez, David Arsenio
dc.contributor.authorRoa Rojas, Jairo
dc.contributor.authorRamos Barrado, José
dc.date.accessioned2020-01-08T19:11:29Z
dc.date.available2020-01-08T19:11:29Z
dc.date.issued2017-01-18
dc.identifierhttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/1917
dc.identifier10.18359/rcin.1917
dc.identifier.urihttp://hdl.handle.net/10654/33418
dc.descriptionThis work aims at revising the state of the art in the synthesis and characterization of polymer/ferrites or polymer/carbon based composites used as EMI shielding materials. In recent years, such composites have been subject of research not only due to their potential technological applications and economy advantages, but also because they are environmentally friendly since some recycled materials such as some plastics and rubbers may be used for their production. Composites of this kind are used in different applications such as magnetic and microwave absorption, transducers manufacturing and biomedical applications like targeted drug delivery, labeling organs, magnetic hyperthermia, among many other things. Fillers of different shapes are used to produce these kinds of composites. Particles, fibers or sheets from several materials can be employed as matrices; for example, thermoplastic or thermoset polymers, synthetic or natural rubbers. It was found that the production method (melt-lending, solution processing, etc.) influenced the electric, magnetic and electromagnetic properties of the composite material due to the aspect ratio of the fillers: fillers with high aspect ratios result in composites with improved electrical, magnetic and better EMI shielding performance. The electromagnetic shielding for these materials is quantified through the shielding effectiveness (SE) or by the reflective loss (RL). A shielding effectiveness of 30 dB corresponds to a 99.9% of electromagnetic attenuation. It was proved that the composite properties depend on the filler content within the matrix.eng
dc.descriptionEste trabajo tiene como propósito revisar el estado del arte en la síntesis y caracterización de materiales de matriz polimérica reforzados con compuestos a base de carbón o ferritas para su uso como materiales atenuadores de interferencia electromagnética (EMI). Recientemente, este tipo de materiales han sido objeto de investigación debido a sus potenciales aplicaciones tecnológicas, economía y de ser además ambientalmente amigables, puesto que polímeros o cauchos reciclados se pueden utilizar para su fabricación. Estos compuestos pueden ser empleados en la producción de blindajes electromagnéticos, transductores, entrega focalizada de medicamentos, marcación de órganos, hipertermia magnética, etc. Para la fabricación de este tipo de materiales compuestos se usan refuerzos particulados, fibras o láminas y como matrices polímeros termoplásticos o termoestables, cauchos sintéticos o naturales. El método de producción de los compuestos (mezcla fundida, métodos químicos, etc.) influye en las propiedades eléctricas, magnéticas y electromagnéticas del material obtenido, debido a la relación de aspecto de los refuerzos: compuestos con elevada relación de aspecto de sus refuerzos tendrán mejores propiedades magnéticas, eléctricas y desempeño frente a la interferencia electromagnética. El blindaje electromagnético de estos materiales se cuantifica a través de la efectividad del blindaje (SE) o en otros casos a través de la pérdida reflectiva (RL). Una efectividad de blindaje de 30 dB corresponde a 99,9% de atenuación de la radiación electromagnética incidente. En todos los trabajos se comprueba que las propiedades del compuesto dependen de la cantidad y del tipo de refuerzo adicionado a la matriz.spa
dc.formatapplication/pdf
dc.formattext/html
dc.formatapplication/msword
dc.language.isospa
dc.publisherUniversidad Militar Nueva Granadaspa
dc.rightsDerechos de autor 2016 Ciencia e Ingeniería Neogranadinaspa
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourceCiencia e Ingenieria Neogranadina; Vol 27 No 1 (2017); 5-26eng
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 27 Núm. 1 (2017); 5-26spa
dc.sourceCiencia e Ingeniería Neogranadina; v. 27 n. 1 (2017); 5-26por
dc.source1909-7735
dc.source0124-8170
dc.titlePolymer based composites for shielding electromagnetic interferenceeng
dc.titleMateriales compuestos de matriz polimérica usados para el blindaje de interferencia electromagnéticaspa
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/1917/2102
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/1917/2481
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/1917/3103
dc.relation.references/*ref*/Bayat, M., Yang, H., Ko, F. K., Michelson, D., & Mei, A. (2014). Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer, 55(3), pp. 936-943. doi: 10.1016/j.polymer.2013.12.042
dc.relation.references/*ref*/Kong, I., Hj Ahmad, S., Hj Abdullah, M., Hui, D., Nazlim Yusoff, A., & Puryanti, D. (2010). Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites. Journal of Magnetism and Magnetic Materials, 322(21), pp. 3401-3409. doi: 10.1016/j.jmmm.2010.06.036
dc.relation.references/*ref*/Thomassin, J.-M., Jérôme, C., Pardoen, T., Bailly, C., Huynen, I., & Detrembleur, C. (2013). Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering: R: Reports, 74(7), pp. 211-232. doi: 10.1016/j.mser.2013.06.001 [4] Chung, D. D. L. (2001). Electromagnetic interference shielding effectiveness of carbon materials. Carbon, 39(2), pp. 279-285. doi:10.1016/S0008-6223(00)00184-6
dc.relation.references/*ref*/Markham, D. (1999). Shielding: quantifying the shielding requirements for portable electronic design and providing new solutions by using a combination of materials and design. Materials & Design, 21(1), pp. 45-50. doi:10.1016/S0261-3069(99)00049-7
dc.relation.references/*ref*/Al-Saleh, M. H., & Sundararaj, U. (2009). Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, 47(7), pp. 1738-1746. doi: 10.1016/j.carbon.2009.02.030
dc.relation.references/*ref*/Ramajo, L. A., Cristóbal, A. A., Botta, P. M., Porto López, J. M., Reboredo, M. M., & Castro, M. S. (2009). Dielectric and magnetic response of Fe3O4/epoxy composites. Composites Part A: Applied Science and Manufacturing, 40(4), pp. 388-393. doi: 10.1016/j.compositesa.2008.12.017
dc.relation.references/*ref*/Arjmand, M., Mahmoodi, M., Gelves, G. A., Park, S., & Sundararaj, U. (2011). Electrical and electromagnetic interference shielding properties of flowinduced oriented carbon nanotubes in polycarbonate. Carbon, 49(11), pp. 3430-3440. doi: 10.1016/j.carbon.2011.04.039
dc.relation.references/*ref*/Al-Saleh, M. H., & Sundararaj, U. (2009). A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon, 47(1), pp. 2-22. doi: 10.1016/j.carbon.2008.09.039
dc.relation.references/*ref*/Ghosh, P., & Chakrabarti, A. (2000). Conducting carbon black filled EPDM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading. European Polymer Journal, 36, pp. 1043–1054. doi:10.1016/S0014-3057(99)00157-3
dc.relation.references/*ref*/Mohanraj, G. t., Chaki, T. k., Chakraborty, A., and Khastgir, D. (2006). AC impedance analysis and EMI shielding effectiveness of conductive SBR composites. Polym Eng Sci, 46, pp. 1342-1349. doi: 10.1002/pen.20593
dc.relation.references/*ref*/Madani, M. (2009). Conducting carbon black filled NR/ IIR blend vulcanizates: Assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading. Journal of Polymer Research, 17(1), pp. 53-62. doi: 10.1007/s10965-009-9289-4
dc.relation.references/*ref*/Ling, Q., Sun, J., Zhao, Q., & Zhou, Q. (2011). Effects of Carbon Black Content on Microwave Absorbing and Mechanical Properties of Linear Low Density Polyethylene/Ethylene-Octene Copolymer/Calcium Carbonate Composites. Polymer-Plastics Technology and Engineering, 50(1), pp. 89-94. doi:10.1080/03602559.2010.531416
dc.relation.references/*ref*/Oh, J.-H., Oh, K.-S., Kim, C.-G., and Hong, C.-S. (2004). Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Composites Part B: Engineering, 35, pp. 49-56. doi: 10.1016/j.compositesb.2003.08.011
dc.relation.references/*ref*/Al-Saleh, M. H., & Sundararaj, U. (2009). Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, 47(7), pp. 1738-1746. doi: 10.1016/j.carbon.2009.02.030
dc.relation.references/*ref*/Das, N.C., Khastgir, D., Chaki, T.K., and Chakraborty, A. (2000). Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Composites Part A: Applied Science and Manufacturing, 31, pp. 1069-1081. doi:10.1016/S1359-835X(00)00064-6
dc.relation.references/*ref*/Al-Saleh, M.H., and Sundararaj, U. (2011). Electrically conductive carbon nanofiber/ polyethylene composite: effect of melt mixing conditions. Polym. Adv. Technol, 22, pp. 246–253. doi: 10.1002/pat.1526
dc.relation.references/*ref*/Fan, Z., Luo, G., Zhang, Z., Zhou, L., & Wei, F. (2006). Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Materials Science and Engineering: B, 132(1), pp. 85-89. doi: 10.1016/j.mseb.2006.02.045
dc.relation.references/*ref*/Micheli, D., Apollo, C., Pastore, R., Bueno Morles, R., Laurenzi, S., and Marchetti, M. (2011). Nanostructured composite materials for electromagnetic interference shielding applications. Acta Astronautica, 69, pp. 747-757. doi: 10.1016/j.actaastro.2011.06.004
dc.relation.references/*ref*/Moon, J.-S., and Gaskill, D.K. (2011). Graphene: Its Fundamentals to Future Applications. IEEE Transactions on Microwave Theory and Techniques, 59, pp. 2702–2708. doi:10.1109/TMTT.2011.2164617
dc.relation.references/*ref*/Makled, M. H., Matsui, T., Tsuda, H., Mabuchi, H., El-Mansy, M. K., & Morii, K. (2005). Magnetic and dynamic mechanical properties of barium ferrite–natural rubber composites. Journal of Materials Processing Technology, 160(2), pp. 229-233. doi: 10.1016/j.jmatprotec.2004.06.013
dc.relation.references/*ref*/Liu, J., Liu, P., Zhang, X., Lu, P., Zhang, X., & Zhang, M. (2016). Fabrication of magnetic rubber composites by recycling waste rubber powders via a microwaveassisted in situ surface modification and semi-devulcanization process. Chemical Engineering Journal, 295, pp. 73-79. doi: 10.1016/j.cej.2016.03.025
dc.relation.references/*ref*/Vinayasree, S., Soloman, M., Sunny, V., Mohanan, P., Kurian, P., & Anantharaman, M. (2013). A microwave absorber based on strontium ferrite-carbon black-nitrile rubber for S and X-band applications. Composites Science and Technology, 82, pp. 69-75. doi: 10.1016/j.compscitech.2013.04.010
dc.relation.references/*ref*/Bellucci, F. S., Lobato de Almeida, F. C., Lima Nobre, M. A., Rodríguez-Pérez, M. A., Paschoalini, A. T., & Job, A. E. (2016). Magnetic properties of vulcanized natural rubber nanocomposites as a function of the concentration, size and shape of the magnetic fillers. Composites Part B: Engineering, 85, pp. 196-206. doi: 10.1016/j.compositesb.2015.09.013
dc.relation.references/*ref*/Sunny, V., Kurian, P., Mohanan, P., Joy, P. A., & Anantharaman, M. R. (2010). A flexible microwave absorber based on nickel ferrite nanocomposite. Journal of Alloys and Compounds, 489(1), pp. 297-303. doi: 10.1016/j.jallcom.2009.09.077
dc.relation.references/*ref*/Weidenfeller, B., Höfer, M., & Schilling, F. (2002). Thermal and electrical properties of magnetite filled polymers. Composites Part A: Applied Science and Manufacturing, 33(8), pp. 1041-1053. doi:10.1016/S1359-835X(02)00085-4
dc.relation.references/*ref*/Singh, A. P., Mishra, M., Hashim, D. P., Narayanan, T. N., Hahm, M. G., Kumar, P., Gupta, B. K. (2015). Probing the engineered sandwich network of vertically aligned carbon nanotube-reduced grapheme oxide composites for high performance electromagnetic interference shielding applications. Carbon, 85, pp. 79-88. doi: 10.1016/j.carbon.2014.12.065
dc.relation.references/*ref*/Shi, Z., Lian, Y., Zhou, X., Gu, Z., Zhang, Y., Iijima, S., Zhou, L., Yue, K.T., and Zhang, S. (1999). Mass-production of singlewall carbon nanotubes by arc discharge method. Carbon, 37, pp. 1449-1453.
dc.relation.references/*ref*/Maser, W.K., Muñoz, E., Benito, A.M., Martínez, M.T., de la Fuente, G.F., Maniette, Y., Anglaret, E., and Sauvajol, J.-L. (1998). Production of high-density single-walled nanotube material by a simple laserablation method. Chemical Physics Letters, 292, pp. 587-593. doi:10.1016/S0009-2614(98)00776-3
dc.relation.references/*ref*/Kong, J., Cassell, A.M., and Dai, H. (1998). Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters, 292, pp. 567–574. doi: 10.1016/S0009-2614(98)00745-3
dc.relation.references/*ref*/El-Nashar, D. E., Ahmed, N. M., & Agami, W. R. (2013). The effect of new ferrite/kaolin pigment on the properties of acrylonitrile-butadiene rubber composites. Materials & Design, 52, pp. 108-117. doi: 10.1016/j.matdes.2013.05.047
dc.relation.references/*ref*/Garzón Posada, A. O. (2015). Síntesis y caracterización de un material compuesto a base de polietileno de alta densidad y magnetita pulverizada. (Tesis de maestría). Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá.
dc.relation.references/*ref*/Song, W.-L., Cao, M.-S., Lu, M.-M., Bi, S., Wang, C.-Y., Liu, J., Yuan, J., and Fan, L.-Z. (2014). Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, pp. 67-76. doi: 10.1016/j.carbon.2013.08.043 [34] Pang, H., Fan, M., and He, Z. (2012). A method for analyzing the microwave absorption properties of magnetic materials. Journal of Magnetism and Magnetic Materials, 324, pp. 2492-2495. doi: 10.1016/j.jmmm.2012.03.018
dc.relation.references/*ref*/Panwar, V., Sachdev, V. K., & Mehra, R. M. (2007). Insulator conductor transition in low-density polyethylene-graphite composites. European Polymer Journal, 43(2), pp. 573-585. doi: 10.1016/j.eurpolymj.2006.11.017
dc.relation.references/*ref*/Al-Saleh, M. H., & Sundararaj, U. (2008). Electromagnetic Interference (EMI) Shielding Effectiveness of PP/PS Polymer Blends Containing High Structure Carbon Black. Macromolecular Materials and Engineering, 293(7), pp. 621-630. doi: 10.1002/mame.200800060
dc.relation.references/*ref*/J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, (2009). Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon, 47, pp. 922-925. doi: 10.1016/j.carbon.2014.10.031
dc.relation.references/*ref*/Zhao, C., Zhang, A., Zheng, Y., and Luan, J. (2012). Electromagnetic and microwave-absorbing properties of magnetite decorated multiwalled carbon nanotubes prepared with poly (N-vinyl-2-pyrrolidone). Materials Research Bulletin, 47, pp. 217-221. doi: 10.1016/j.materresbull.2011.11.047
dc.subject.proposalcomposite materialeng
dc.subject.proposalferriteseng
dc.subject.proposalcarboneng
dc.subject.proposalelectromagnetic attenuationeng
dc.subject.proposalelectromagnetic shieldingeng
dc.subject.proposalresistivityeng
dc.subject.proposalconductiviteng
dc.subject.proposalmagnetizationeng
dc.subject.proposalmaterial compuestospa
dc.subject.proposalferritasspa
dc.subject.proposalcarbónspa
dc.subject.proposalatenuación electromagnéticaspa
dc.subject.proposalblindaje electromagnéticospa
dc.subject.proposalresistividadspa
dc.subject.proposalconductividadspa
dc.subject.proposalmagnetizaciónspa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record