Show simple item record

dc.contributor.authorMarulanda Cardona, Victor Fernando
dc.contributor.authorMarulanda Buitrago, Paola Andrea
dc.contributor.authorAlvarado Acosta, Didier Haid
dc.date.accessioned2020-01-08T19:11:30Z
dc.date.available2020-01-08T19:11:30Z
dc.date.issued2017-08-01
dc.identifierhttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/2305
dc.identifier10.18359/rcin.2305
dc.identifier.urihttp://hdl.handle.net/10654/33423
dc.descriptionLandfill leachate treatment has been the focus of a great deal of research through different physicochemical and biological methods. However, no single method successfully addresses the required destruction efficiencies regarding organic matter and nitrogen, which is why the treatment is done employing combined technologies. Supercritical water oxidation (SCWO), a process that takes place at temperatures and pressures above the critical point of water and in the presence of a source of oxygen, has been successfully applied to the treatment of different types of wastewaters in an efficient way. Therefore, this paper presents an experimental study of the supercritical water oxidation of landfill leachate in a batch reactor in the temperature range 400-500°C, reaction times from 15 to 30 minutes and oxygen excess (OE) from 100% to 300 %. Total organic carbon (TOC) and Total nitrogen (TN) destruction efficiencies were measured in the reactor effluent samples and the combined effect of the studied factors was analyzed by means of the Analysis of Variance (ANOVA). Optimal operation conditions for TOC destruction were 400°C, 30 min and 100 % OE, being 500°C, 30 min and 100 % OE for TN destruction. Contrary to what has been reported in similar studies, the results suggest that it is possible to accomplish the simultaneous TOC and TN destruction in leachate wastewater by SCWO treatment at 400°C, 100 % OE and residence times longer than 30 min and without using a catalyst, either in batch or in a continuous process, as long as both the oxidant and the wastewater are mixed and heated together at the reaction temperature.eng
dc.descriptionEl tratamiento de lixiviados por medio de diferentes procesos fisicoquímicos y biológicos ha sido ampliamente estudiado. Sin embargo, ningún proceso logra las eficiencias de destrucción requeridas en cuanto a materia orgánica y nitrógeno, razón por la cual el tratamiento se realiza por medio de tecnologías combinadas. La oxidación en agua supercrítica o SCWO, proceso que se lleva a cabo a temperaturas y presiones superiores a las del punto crítico del agua en presencia de una fuente de oxígeno, se ha aplicado exitosamente al tratamiento de distintos tipos de aguas residuales de forma eficiente. Por lo tanto, este trabajo presenta un estudio experimental de la oxidación en agua supercrítica de lixiviados de relleno sanitario en un reactor batch, en el rango de temperatura de 400-500°C, tiempos de reacción de 15 a 30 minutos y excesos de oxígeno (OE) de 100 % a 300 %. Se midieron las eficiencias de destrucción de carbono orgánico total (COT) y nitrógeno total (NT), y se determinó el efecto combinado de los factores estudiados por medio del Análisis de Varianza (ANOVA). Las condiciones de operación óptimas para la destrucción de COT fueron 400°C, 30 min y 100 % OE, y 500°C, 30 min y 100 % OE para el NT. A diferencia de lo reportado en estudios similares, los resultados sugieren que es posible llevar a cabo la destrucción simultánea del COT y el NT en los lixiviados por medio de SCWO a 400°C, 100 % OE y tiempos de residencia de más de 30 min sin usar un catalizador, ya sea en un proceso batch o continuo, siempre y cuando tanto el oxidante como el agua residual se mezclen y se calienten juntos a la temperatura de reacción.spa
dc.formatapplication/pdf
dc.formattext/html
dc.formatapplication/msword
dc.formatapplication/pdf
dc.formatapplication/msword
dc.language.isoeng
dc.publisherUniversidad Militar Nueva Granadaspa
dc.rightsDerechos de autor 2016 Ciencia e Ingeniería Neogranadinaspa
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourceCiencia e Ingenieria Neogranadina; Vol 27 No 2 (2017); 5-26eng
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 27 Núm. 2 (2017); 5-26spa
dc.sourceCiencia e Ingeniería Neogranadina; v. 27 n. 2 (2017); 5-26por
dc.source1909-7735
dc.source0124-8170
dc.titleLandfill leachate treatment by batch supercritical water oxidationeng
dc.titleTratamiento de lixiviados de relleno sanitario por medio de oxidación en agua supercríticaspa
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/2305/2497
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/2305/2660
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/2305/3130
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/2305/3131
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/2305/3132
dc.relation.references/*ref*/P. Ghosh, I. S. Thakur and A. Kaushik, “Bioassays for toxicological risk assessment of landfill leachate: A review,” Ecotoxicol. Environ. Saf., vol.141, pp. 259-270, Jan. 2017. https://doi.org/10.1016/j.ecoenv.2017.03.023
dc.relation.references/*ref*/T. A. Kurniawan, W. H. Lo and G. Y. S. Chan, “Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate,” Jour. Hazard. Mater., vol. 129, no. 1-3, pp. 80-100, 2006. https://doi.org/10.1016/j.jhazmat.2005.08.010
dc.relation.references/*ref*/Y. N. Vodyanitskii, “Biochemical processes in soil and groundwater contaminated by leachates from municipal landfills (Mini Review),” Ann. Agrar. Sci., vol.14, no. 3, pp. 1512-1887, 2016. https://doi.org/10.1016/j.aasci.2016.07.009
dc.relation.references/*ref*/N. B. Yenigül, A. M. M. Elfeki, J. C. Gehrels, C. van den Akker, A. T. Hensbergen and F. M. Dekking, “Reliability assessment of groundwater monitoring networks at landfill sites,” Jour. Hydrol., vol. 308, no. 1-4, pp. 1-17, 2005. https://doi.org/10.1016/j.jhydrol.2004.10.017
dc.relation.references/*ref*/S. Renou, J. G. Givaudan, S. Poulain, F. Dirassouyan and P. Moulin, “Landfill leachate treatment: Review and opportunity,” Jour. Hazard. Mater., vol. 150, no. 3, pp. 468-493, 2008. https://doi.org/10.1016/j.jhazmat.2007.09.077
dc.relation.references/*ref*/J. M. Ploeger, A. C. Madlinger and J. W. Tester, “Revised Global Kinetic Measurements of Ammonia Oxidation in Supercritical Water,” Ind. Eng. Chem. Res., vol. 45, no. 20, pp. 6842-6845, 2006. https://doi.org/10.1021/ie0605276
dc.relation.references/*ref*/M. D. Bermejo, F. Cantero and M. J. Cocero, “Supercritical water oxidation of feeds with high ammonia concentrations Pilot plant experimental results and modeling,” Chem. Eng. Jour., vol.137, no. 3, pp. 542-549, 2008. https://doi.org/10.1016/j.cej.2007.05.010
dc.relation.references/*ref*/L. Labiadh, A. Fernandes, L. Ciríaco, M. J. Pacheco et al., “Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate,” J. Environ. Manage., vol. 181, pp. 515-521, Oct. 2016. https://doi.org/10.1016/j.jenvman.2016.06.069
dc.relation.references/*ref*/J. Xu, Y. Long, D. Shen, H. Feng and T. Chen, “Optimization of Fenton treatment process for degradation of refractory organics in pre-coagulated leachate membrane concentrates,” Jour. Hazard. Mater., vol. 323, pp. 674-680, 2017. https://doi.org/10.1016/j.jhazmat.2016.10.031
dc.relation.references/*ref*/S. Renou, S. Poulain, J. G. Givaudan and P. Moulin, “Treatment process adapted to stabilized leachates: Lime precipitation-prefiltration-reverse osmosis,” Jour. Memb. Sci., vol. 313, no. 1-2, pp. 9-22, 2008. https://doi.org/10.1016/j.memsci.2007.11.023
dc.relation.references/*ref*/J. R. Portela, E. Nebot and E. Mart, “Hydrothermal oxidation: Application to the treatment of different cutting fluid wastes,” Jour. Hazard. Mater., vol. 144, no. 3, pp. 639-644, 2007. https://doi.org/10.1016/j.jhazmat.2007.01.088
dc.relation.references/*ref*/M. J. Cocero, E. Alonso and M. T. Sanz, “Supercritical water oxidation process under energetically self-sufficient operation,”. Jour. Supercrit. Fluids, vol. 24, no. 1, pp. 37-46, 2002. https://doi.org/10.1016/s0896-8446(02)00011-6
dc.relation.references/*ref*/Y. García-Rodríguez, F. Mato, A. Martín, M. D. Bermejo and M. J. Cocero, “Energy recovery from effluents of supercritical water oxidation reactors,” Jour. Supercrit. Fluids, vol. 104, pp. 1-9, Sep. 2015. https://doi.org/10.1016/j.supflu.2015.05.014
dc.relation.references/*ref*/V. F. Marulanda, “Biodiesel production by supercritical methanol transesterification: Process simulation and potential environmental impact assessment,” Jour. Clean. Prod., vol. 33, pp. 109-116, 2015. https://doi.org/10.1016/j.jclepro.2012.04.022
dc.relation.references/*ref*/V. Marulanda and G. Bolaños, “Supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil: Laboratory-scale data and economic assessment,” Jour. Supercrit. Fluids, vol. 54, pp. 258-265, Aug. 2010. https://doi.org/10.1016/j.supflu.2010.04.008
dc.relation.references/*ref*/J. M. N. van Kasteren and a. P. Nisworo, “A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification,” Resour. Conserv. Recycl., vol. 50, no. 4, pp. 442-458, 2007. https://doi.org/10.1016/j.resconrec.2006.07.005
dc.relation.references/*ref*/B. Cui, F. Cui, G. Jing, S. Xu et al., “Oxidation of oily sludge in supercritical water,” Jour. Hazard. Mater., vol. 165, no. 1-3, pp. 511-517, 2009. https://doi.org/10.1016/j.jhazmat.2008.10.008
dc.relation.references/*ref*/M. Akg and O. Onur, “Treatment of textile wastewater by SCWO in a tube reactor,” Jour. Supercrit. Fluids, vol. 43, no.1, pp. 106-111, 2007.
dc.relation.references/*ref*/X. Du, R. Zhang, Z. Gan and J. Bi, “Treatment of high strength coking wastewater by supercritical water oxidation,” Fuel, vol. 104, pp. 77-82, Feb. 2013. https://doi.org/10.1016/j.fuel.2010.09.018
dc.relation.references/*ref*/B. Veriansyah, T. Park, J. Lim and Y. Lee, “Supercritical water oxidation of wastewater from LCD manufacturing process : kinetic and formation of chromium oxide nanoparticles,” Jour. Supercrit. Fluids, vol. 34, no. 1, pp. 51-61, 2005. https://doi.org/10.1016/j.supflu.2004.10.001
dc.relation.references/*ref*/P. A. Marrone, “Supercritical water oxidation. Current status of full-scale commercial activity for waste destruction,” Jour. Supercrit. Fluids, vol. 79, pp. 283-288, Jul. 2013. https://doi.org/10.1016/j.supflu.2012.12.020
dc.relation.references/*ref*/W. Gong and X. Duan, “Degradation of landfill leachate using transpiring-wall supercritical water oxidation (SCWO) reactor,” Waste Manag., vol. 30, no. 11, pp. 2103-2107, 2010. https://doi.org/10.1016/j.wasman.2010.04.028
dc.relation.references/*ref*/S. Wang, Y. Guo, C. Chen, J. Zhang et al., “Supercritical water oxidation of landfill leachate,” Waste Manag., vol. 31, no. 9-10, pp. 2027-2035, 2011. https://doi.org/10.1016/j.wasman.2011.05.006
dc.relation.references/*ref*/D. Zou, Y. Chi, C. Fu, J. Dong, “Co-destruction of organic pollutants in municipal solid waste leachate and dioxins in fly ash under supercritical water using H2O2 as oxidant,” Jour. Hazard. Mater., vol. 248-249, pp. 177-184, 2013. https://doi.org/10.1016/j.jhazmat.2013.01.005
dc.relation.references/*ref*/K. Hatakeda, Y. Ikushima, O. Sato, T. Aizawa and N. Saito, “Supercritical water oxidation of polychlorinated biphenyls using hydrogen peroxide,” vol. 54, no. 15-16, pp. 3079-3084, 1999. https://doi.org/10.1016/s0009-2509(98)00392-3
dc.relation.references/*ref*/E. Croiset, S. F. Rice and R. G. Hanush, “Hydrogen peroxide decomposition in supercritical water,” Am. Inst. Chem. Eng., vol. 43, no. 9, pp. 2343-2352, 1997. https://doi.org/10.1002/aic.690430919
dc.relation.references/*ref*/M. Mukhopadhyay. Natural Extracts Using Supercritical Carbon Dioxide. Florida, USA: CRC Press, 2000. https://doi.org/10.1201/9781420041699
dc.relation.references/*ref*/J. L. Dinaro, P. A. Marrone, S. F. Rice, P. A. Webley, “Critical review of kinetic data for the oxidation of methanol in supercritical water,” Jour. Supercrit. Fluids, vol. 34, no. 3, pp. 249-286, 2005. https://doi.org/10.1016/j.supflu.2003.12.018
dc.relation.references/*ref*/D. C. Montgomery. Design and Analysis of Experiments (8th. Ed.). Nueva York: John Wiley & Sons, 2012.
dc.relation.references/*ref*/B. Veriansyah, J. Kim and J. Lee, “Destruction of chemical agent simulants in a supercritical water oxidation bench-scale reactor,” Jour. Hazard. Mater., vol. 147, no. 1-2, pp. 13-19, 2007. https://doi.org/10.1016/j.jhazmat.2006.12.040
dc.relation.references/*ref*/R. Killilea, K. C. Swallow and G. T. Hong, “The Fate of Nitrogen in Supercritical-Water Oxidation,” Jour. Supercrit. Fluids, vol. 5, no. 1, pp. 72-78, 1992. https://doi.org/10.1016/0896-8446(92)90044-k
dc.relation.references/*ref*/G. Knothe, A. C. Matheaus and T. W. Ryan, “Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester,” Fuel, vol. 82, no. 8, pp. 971-975, 2003. https://doi.org/10.1016/s0016-2361(02)00382-4
dc.relation.references/*ref*/K. M. Benjamin and P. E. Savage, “Supercritical Water Oxidation of Methylamine,” Ind. Eng. Chem. Res., vol. 44, no. 14, pp. 5318-5324, 2005. https://doi.org/10.1021/ie0491793
dc.relation.references/*ref*/S. Yesodharan, “Supercritical water oxidation : An environmentally safe method for the disposal of organic wastes,” Current Science, vol. 82, no. 9, pp. 1112-1122, 2002.
dc.relation.references/*ref*/Z. Fang, S. K. Xu, R. L. Smith Jr., K. Arai and J. A. Kozinski, “Destruction of deca-chlorobiphenyl in supercritical water under oxidizing conditions with and without Na2CO3,” Jour. Supercrit. Fluids, vol. 33, no. 3, pp. 247-258, 2005. https://doi.org/10.1016/j.supflu.2004.08.010
dc.relation.references/*ref*/T. E. Butt, E. Lockley and K. O. K. Oduyemi, “Risk assessment of landfill disposal sites - State of the art,” Waste Manag., vol. 28, no. 6, pp. 952-964, 2008. https://doi.org/10.1016/j.wasman.2007.05.012
dc.relation.references/*ref*/J. A. Reyes-López, J. Ramírez-Hernández, O. Lázaro-Mancilla, C. Carreón-Diazconti and M. M. L. Garrido, “Assessment of groundwater contamination by landfill leachate: A case in México,” Waste Manag., vol. 28, no. 1, pp. 33-39, 2008. https://doi.org/10.1016/j.wasman.2008.03.024
dc.subject.proposallandfill leachateeng
dc.subject.proposalSCWOeng
dc.subject.proposalTOC destructioneng
dc.subject.proposaltotal nitrogen destructioneng
dc.subject.proposallixiviadosspa
dc.subject.proposalSCWOspa
dc.subject.proposaldestrucción de COTspa
dc.subject.proposaldestrucción de nitrógeno totalspa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record