Mostrar el registro sencillo del ítem

dc.creatorSierra-Polanco, Tomás
dc.creatorMilanés, Diego
dc.creatorVera, Carlos E.
dc.date2018-05-15
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/2854
dc.identifier10.18359/rcin.2854
dc.descriptionIn order to develop new techniques for the knowledge of the universe some experiments in elementary particles and high energy physics are proposed, where progress on detector and data acquisition techniques is fundamental. This project presents some improvements for the LHCb upgrade that will be performed in the period between 2018 and 2019 during the Long Shutdown 2 of the CERN experiments in order to configure, improve and re-structure the data acquisition practices. It will emphasize the Scintillating Fibers detector (SciFi), one of LHCb's future sub-detectors in charge of the trace pattern recognition based on the hits occurred on this sub-detector and the recording of significant events in the data transmission. Due to the proposed changes of the LHCb upgrade, regarding the increase of the luminosity and the collision center-of-mass energy, it is essential to reconsider the digital processes in the data acquisition and their respective processing among the transmission channels, due to the high velocities at which they occur. Therefore, the operation mode configurations in the acquisition digital boards were the aim of this work. And as such, the current condition of the detector and its acquisition techniques and protocols are documented corresponding to their modification. This paper shows a step-by-step presentation of the modifications applied to the codes to move from a Standard Mode to a Wide Bus Mode, increasing the data rate by means of the quantity reduction of the control bits to enlarge the amount of analyzable information among the events. en-US
dc.descriptionLas tarjetas de adquisición se servirán de la actualización del LHCb, que tendrá lugar en el periodo entre 2018 y 2019, durante el Long Shutdown 2 de los experimentos del CERN. Estas mejoras apuntan a la configuración y reestructuración de las técnicas de adquisición de datos, debido al incremento en la luminosidad y correspondientemente con su energía de centro de masa actual. Por lo tanto, se documenta la condición del detector, sus técnicas de adquisición y sus protocolos. Se hará énfasis en las Fibras de Centelleo (SciFi), uno de los futuros subdetectores del LHCb, encargado del reconocimiento de patrones de trazas, basado en los cruces o impactos que ocurren sobre sus fibras, además del registro de eventos significativos en la transmisión de datos. Este artículo presenta paso a paso las modificaciones aplicadas a los códigos para pasar del Modo Estándar al Modo de Bus Ampliado, incrementando la tasa de datos mediante la reducción de bits de control, para acrecentar el número de información analizable sobre los eventos.es-ES
dc.formatapplication/pdf
dc.formatapplication/xml
dc.languageeng
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/2854/2880
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/2854/3053
dc.relation/*ref*/CERN/LHCC. (2014). LHCb Tracker Upgrade Technical Design Report. CERN/LHCC 2014-001, LHCb-TDR-15. The LHCb Collaboration.
dc.relation/*ref*/LPNHE. (2014). L'équipe LHCb au LPNHE. Document pour le Conseil Scientifique du LPNHE.
dc.relation/*ref*/Gallas, A. (2012). The LHCb Upgrade. Physics Procedia, volume 37, pp. 151 - 163. doi: 10.1016/j.phpro.2012.02.364
dc.relation/*ref*/Brown, S., Vranesic, Z. (2009). Fundamentals of Digital Logic with VHDL Design. New York, United States: McGraw-Hill, 3rd Ed.
dc.relation/*ref*/Floyd, T. L. (2006). Fundamentos de Sistemas Digitales. Madrid, Spain: Pearson Educación S.A, 9th Edition.
dc.relation/*ref*/Wyllie, K., Alessio, F., Gaspar, C., Jacobsson, R., Le Gac, R., Neufeld, N., Schwemmer, R. (2013). Electronics Architecture of the LHCb Upgrade. LHCb-PUB-2011-011.
dc.relation/*ref*/Evans L. (2009). The Large Hadron Collider: a Marvel of Technology. Milan, Italy: Fundamental Sciences. CERN & EPFL Press.
dc.relation/*ref*/Baron, S., Barrios Marin, M. (2014). Draft: GBT-FPGA User Guide. Version 1.01.
dc.relation/*ref*/Vouters, G., Alessio, F., Cachemiche, J. P., Cap, S., Drancourt, C., Durante, P., Duval, P. Y., Fournier, L., Jevaud, M., Hachon, F., Mendez, J., Rethore, F., T'Jampens, S. (2014). LHCb Upgrade MiniDAQ HandBook. LHCb Technical Report. Revision 2.05.
dc.relation/*ref*/Bigi, I., Sanda, A. (2009). CP Violation. New York, United States: Cambridge University Press, 2nd Edition.
dc.relation/*ref*/Branco, G. C., Lavoura, L., Silva, P. (1999). CP Violation. Oxford, England: Clarendon Press.
dc.relation/*ref*/Muheim, F. (2007). LHCB Upgrade Plans. Nuclear Physics B (Proceedings Supplements), volume 170, pp. 317 - 322. doi: 10.1016/j.nuclphysbps.2007.05.015
dc.relation/*ref*/Van Beuzekom, M., Buytaert, J., Campbell, M., Collins, P., Gromov, V., Kluit, R., Llopart, X., Poikela, T., Wyllie, K., Zivkovic, V. (2013). VeloPix ASIC Development for LHCb VELO Upgrade. Nuclear Instruments and Methods in Physics Research A, volume 731, pp. 92 - 96. doi: 10.1016/j.nima.2013.04.016
dc.relation/*ref*/Collins, P. (2013). The LHCb VELO (VErtex LOcator) and the LHCb VELO Upgrade. Nuclear Instruments and Methods in Physics Research A, volume 699, pp. 160 - 165. doi: 10.1016/j.nima.2012.03.047
dc.relation/*ref*/Joram, C., Haefeli, G., Leverington, B. (2015). Scintillating Fibre Tracking at High Luminosity Colliders. IOP Science Publishing & Sissa Medialab. At: http://iopscience.iop.org/article/10.1088/1748-0221/10/08/C08005#references
dc.relation/*ref*/Alfieri, C., Marangoni M. (2014). R&D on the LHCb SciFi Tracker: Characterisation of Scintillating Fibres and SiPM Photo-Detectors (Master's Thesis). Industrial Engineering and Informatics Faculty, Physics Engineering, Politecnico di Milano.
dc.relation/*ref*/Guz, Y. (2013). LHCb Calorimeter Upgrade. Proceedings of CHEF, Calorimetry for High Energy Frontiers. pp. 355 - 362. At: https://cds.cern.ch/record/1602198/files/CHEF2013_Yury_Guz.pdf
dc.relation/*ref*/Easo, S. (2014). Upgrade of LHCb-RICH Detectors. Nuclear Instruments and Methods in Physics Research A, volume 766, pp. 110 - 113. doi: 10.1016/j.nima.2014.04.084
dc.relation/*ref*/LHCb Public Website. (2008). Detector: Tracking System. At: http://lhcb-public.web.cern.ch/lhcb-public/en/Detector/Trackers2-en.html
dc.relation/*ref*/Cogneras, E., Martinelli, M., Van Tilburg, J., De Vries, J. (2014). The Digitisation of the Scintillating Fibre Detector. LHCb-PUB-2014-003. At: https://cds.cern.ch/record/1641930/files/LHCb-PUB-2014-003.pdf
dc.relation/*ref*/Ma, K. J., Kang, W. G., Ahn, J. K., Choi, S., Choi, Y., Hwang, M. J., Jang, J. S., Jeon, E. J., Joo, K. K., Kim, H.S., Kim, J. Y., Kim, S. B., Kim, S. H., Kim, W., Kim, Y. D., Lee, J., Lim, I. T., Oh, Y. D., Pac, M. Y., Park, C. W., Park, I. G., Park, K. S., Stepanyan, S. S., Yu, I. (2009). Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube. Nuclear Instruments and Methods A, volume 629, pp. 93 - 100. doi: 10.1016/j.nima.2010.11.095
dc.relation/*ref*/ALTERA. (2014). Stratix V GX FPGA Development Board, Reference Manual. ALTERA. MNL-01063-1.5.
dc.relation/*ref*/Baron S., Cachemiche J. P., Marin F., Moreira P., Soos C. (2009). Implemmenting de GBT Data Transmission Protocol in FPGA's. CERN & CPPM.
dc.relation/*ref*/Alessio, F., Yves Duval, P., Vouters, G. (2014). Draft: LHCb Upgrade GIT Repository for AMC40 Firmware. LCHb Technical Report.
dc.relation/*ref*/Moreira, P., Christiansen, J., Wyllie, K. (2015). Draft: GBT Manual. Version 0.6.
dc.relation/*ref*/Alessio, F., Jacobsson, R. (2011). System-level Specifications of the Timing and Fast Control System for the LHCb Upgrade. CERN-LHCb-PUB-2012-001.
dc.relation/*ref*/Vouters, G., Alessio, F., Cap, S., Drancourt, C., Fournier, L., T'Jampens, S., Wyllie, K. (2015). Front-end Data Format of the LHCb Upgrade. Revision 3.0.
dc.rightsDerechos de autor 2018 Ciencia e Ingeniería Neogranadinaes-ES
dc.sourceCiencia e Ingenieria Neogranadina; Vol. 28 No. 2 (2018); 43-62en-US
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 28 Núm. 2 (2018); 43-62es-ES
dc.sourceCiencia e Ingeniería Neogranadina; v. 28 n. 2 (2018); 43-62pt-BR
dc.source1909-7735
dc.source0124-8170
dc.subjectScintillating fiberses-ES
dc.subjectparticle detectorses-ES
dc.subjectVHDL programminges-ES
dc.subjectcode configurationes-ES
dc.titleConfiguration of the Operation Modes for a Scintillating Fiber Sub-Detector in LHCb Experimenten-US
dc.titleConfiguración de los modos de operación para un subdetector de fibras centelleantes en el experimento LHCbes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem