Mostrar el registro sencillo del ítem

dc.contributor.authorCampagnoli, Sandra Ximena
dc.contributor.authorEstupiñan Escalante, Enrique
dc.contributor.authorSoto Vargas, Javier
dc.date.accessioned2020-01-08T19:11:36Z
dc.date.available2020-01-08T19:11:36Z
dc.date.issued2019-08-23
dc.identifierhttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/3424
dc.identifier10.18359/rcin.3424
dc.identifier.urihttp://hdl.handle.net/10654/33446
dc.descriptionIn soil stabilization and pavement recycling, the expansion ratio and half-life parametershave been considered to defne foamed bitumen quality relatively well. However, when applyingfoamed bitumen technology in the production of warm mixtures, these properties are determinedto be insufcient to characterize the foam and guarantee complete aggregate coverage from thebitumen, adequate workability, and easy mixture compaction, together with appropriate mixturebehavior in service. This has led to conclusive studies on the need to establish, along with the expansion and half-life relation, the collapse curve and bubble size distribution in foamed bitumen.Several studies also recommend safer and more reliable techniques for measuring foam properties.Additionally, we summarize the techniques currently being explored by the testing laboratories atthe Julio Garavito Colombian School of Engineering to characterize foamed bitumen produced inthe WLB-10S laboratory foamed bitumen plant. These techniques include invasive measures, suchas the calibrated dipstick and the foamed bitumen collapse test, along with non-invasive measures,such as image processing and using infrared sensors. Finally, the paper denotes the potential of eachtechnique by revealing some results from the measurements obtained through their application.eng
dc.descriptionEn la estabilización de suelos y en el reciclaje de pavimentos, se ha considerado que larelación de expansión y la vida media defnen relativamente bien la calidad de las espumas de asfalto.Sin embargo, al aplicar la tecnología de los asfaltos espumados a la fabricación de mezclas tibias,se ha visto que estas propiedades no resultan sufcientes para caracterizar la espuma y asegurarel cubrimiento completo de los agregados por el asfalto, una adecuada trabajabilidad y facilidad decompactación de la mezcla, así como un comportamiento apropiado de la mezcla en servicio. Estehecho ha motivado estudios concluyentes en la necesidad de establecer, además de la relación deexpansión y de la vida media, la curva de colapso y la distribución de tamaños de las burbujas en unaespuma de asfalto. Varios de estos estudios también recomiendan técnicas más seguras y confablespara la medida de las propiedades de la espuma. En este artículo, se resumen las técnicas que seestán explorando en los laboratorios de la Escuela Colombiana de Ingeniería Julio Garavito para caracterizar espumas de asfalto fabricadas en planta de laboratorio WLB-10S. Tales técnicas incluyenmedidas invasivas como la varilla graduada y el ensayo de colapso de la espuma de asfalto y no invasivas como el procesamiento de imágenes y el uso sensores infrarrojos. También, para mostrar el potencial de cada técnica, se presentan algunos resultados de las medidas obtenidas con su aplicación.spa
dc.formatapplication/pdf
dc.formattext/xml
dc.language.isospa
dc.publisherUniversidad Militar Nueva Granadaspa
dc.rightsDerechos de autor 2019 Ciencia e Ingeniería Neogranadinaspa
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourceCiencia e Ingenieria Neogranadina; Vol 29 No 1 (2019); 153-166eng
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 29 Núm. 1 (2019); 153-166spa
dc.sourceCiencia e Ingeniería Neogranadina; v. 29 n. 1 (2019); 153-166por
dc.source1909-7735
dc.source0124-8170
dc.titleFoamed Bitumen Characterization Techniqueseng
dc.titleTécnicas para caracterización de espumas de asfaltospa
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepdfspa
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/3424/3336
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/3424/3368
dc.relation.references/*ref*/F. Yin, E. Arámbula-Mercado, and D. Newcomb, “Effect of laboratory foamer on asphalt foaming characteristics and foamed mixture properties,” Int. J. Paving Eng., vol. 8436, no. January, 2015.
dc.relation.references/*ref*/National Asphalt Pavement Association NAPA, “Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage,” vol. 138. pp. 1–40, 2015.
dc.relation.references/*ref*/K. J. Jenkins, M. van de Ven, and J. de Groot, “Characterisation of foamed bitumen,” 7th Conf. Asph. pavements South. Africa, pp. 1–18, 1999.
dc.relation.references/*ref*/K. J. Jenkins, “Mix Design considerations for cold and half-warm bituminous mixes with emphasis on foamed bitumen,” no. September. Stellenbosch, 2000.
dc.relation.references/*ref*/K.J. Jenkins and M. van de Ven, “Guidelines for the mix design and performance prediction of Foamed bitumen mixes,” in 20th South African Transport Conference, 2001.
dc.relation.references/*ref*/M. Saleh, “Characterization of Foam Bitumen Quality and the Mechanical Properties of Foam Stabilized Mixes,” Univ. Canterbury. Civ. Eng., 2006.
dc.relation.references/*ref*/D. Newcomb et al., NCHRP - REPORT 807. Properties of Foamed Asphalt for Warm Mix Asphalt Applications. Transportation research Board, 2015.
dc.relation.references/*ref*/D. Lesueur et al., “Foamability and Foam Stability,” Road Mater. Pavement Des., vol. 5, no. 3, pp. 277–302, 2004.
dc.relation.references/*ref*/G. P. He and W. G. Wong, “Decay properties of the foamed bitumens,” Constr. Build. Mater., vol. 20, no. 10, pp. 866–877, 2006.
dc.relation.references/*ref*/Z. He and W. Lu, “Research on the properties of road building materials treated with foamed bitumen in China,” Proc. 8° Conf. Asph. Pavements Soudthern Africa (CAPSA 04), no. September, pp. 2–9, 2004.
dc.relation.references/*ref*/H. Ozturk, “Quantification of quality of foamed warm mix asphalt binders and mixtures,” Michigan State University, 2013.
dc.relation.references/*ref*/B. W. Hailesilassie, P. Schuetz, I. Jerjen, M. Hugener, and M. N. Partl, “Dynamic X-ray radiography for the determination of foamed bitumen bubble area distribution,” J. Mater. Sci., vol. 50, no. 1, pp. 79–92, 2014.
dc.relation.references/*ref*/B. Hailesilassie, P. Schuetz, I. Jerjen, A. Bieder, M. Hugener, and M. Pratl, “Evolution of bubble size distribution during foam bitumen formation and decay,” Asph. Pavements, 2014.
dc.relation.references/*ref*/B. W. Hailesilassie, M. Hugener, A. Bieder, and M. N. Partl, “New experimental methods for characterizing formation and decay of foam bitumen,” Mater. Struct., vol. 49, no. 6, pp. 2439–2454, 2016.
dc.relation.references/*ref*/G. Martinez-Arguelles, F. Giustozzi, M. Crispino, and G. W. Flintsch, “Investigating physical and rheological properties of foamed bitumen,” Constr. Build. Mater., vol. 72, pp. 423–433, Dec. 2014.
dc.relation.references/*ref*/Z. Arega, A. Bhasin, and W. Li, “Parametric Analysis of Factors That Affect Asphalt Binder Foaming Characteristics,” ASCE Civ. Eng., pp. 1–10, 2015.
dc.relation.references/*ref*/J.P. Aurrand Lions, “Application of fuzzy control for ISIS vehicule braking. proceedings of Fuzzy and Neuronal System, and Vehicule Applications,” 1991.
dc.subject.proposalFoamed Bitumeneng
dc.subject.proposalExpansion Ratioeng
dc.subject.proposalHalf-Lifeeng
dc.subject.proposalCollapse Curveeng
dc.subject.proposalFoam Bubbleseng
dc.subject.proposalWarm Mixtureseng
dc.subject.proposalAsfalto espumadospa
dc.subject.proposalrelación de expansiónspa
dc.subject.proposalvida mediaspa
dc.subject.proposalcurva de colapsospa
dc.subject.proposalburbujas de espumaspa
dc.subject.proposalmezclas asfalticas tibiasspa


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem