Show simple item record

dc.contributor.authorSandoval Vallejo, Eimar Andres
dc.contributor.authorRivera Mena, William Albeiro
dc.date.accessioned2020-01-08T19:11:36Z
dc.date.available2020-01-08T19:11:36Z
dc.date.issued2019-08-23
dc.identifierhttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/3478
dc.identifier10.18359/rcin.3478
dc.identifier.urihttp://hdl.handle.net/10654/33447
dc.descriptionThe thickness and layer properties of a pavement structure are highly determined by subgrade stiffness. However, in some cases, performing direct stiffness tests is impossible, at least forthe required frequency, which indicates that correlations with other soil properties must be used.Therefore, this paper reveals the results from an experimental program conducted to obtain correlations between the California bearing ratio (CBR) of undisturbed fne-grained soils and their unconfned compressive strength and/or some index properties. For these purposes, CBR, unconfnedcompressive strength, Atterberg limits, granulometry, and natural moisture content tests were performed. Thirty-eight samples were selected to guarantee a statistical power and confdence level of95%, together with minimum Pearson correlation coefcient (r) of 0.60. Although correlating the CBRwith the index properties assessed was impossible, the study made correlations between the natural and saturated CBR and unconfned compressive strength. These correlations, at r > 0.80, werethen compared against the correlations reported in the literature between CBR and other undrainedshear strength tests. For the same strength, the CBR values determined herein are considerablysmaller than the correlations reported in the literature.eng
dc.descriptionLos espesores y propiedades de las capas de una estructura de pavimento son altamentedeterminados por la rigidez de la subrasante. En algunos casos, no es posible la ejecución de pruebas directas para determinar dicha rigidez, al menos en la frecuencia requerida, y es necesario usarcorrelaciones con otras propiedades del suelo. Este artículo presenta resultados de un programaexperimental realizado para obtener correlaciones entre el CBR (por sus siglas en inglés) inalteradode suelos fnos con su resistencia a la compresión inconfnada o algunas propiedades índice. Se realizaron ensayos de CBR de laboratorio, resistencia a la compresión inconfnada, límites de Atterberg,granulometría y humedad natural. El número de muestras (38) fue seleccionado para garantizar seguridad y poder estadístico del 95 % y un coefciente de correlación de Pearson (r) mínimo de 0,60.Aunque no fue posible correlacionar el CBR con las propiedades índice evaluadas, se obtuvieroncorrelaciones entre el CBR natural y saturado, y la resistencia a la compresión inconfnada. Las correlaciones obtenidas, que tuvieron valores r > 0,80, fueron comparadas con algunas correlaciones en laliteratura entre el CBR y otros ensayos de resistencia no drenada. Para la misma resistencia, los CBRen este estudio son considerablemente menores que los de dichas correlaciones.spa
dc.formatapplication/pdf
dc.formattext/xml
dc.language.isospa
dc.publisherUniversidad Militar Nueva Granadaspa
dc.rightsDerechos de autor 2019 Ciencia e Ingeniería Neogranadinaspa
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourceCiencia e Ingenieria Neogranadina; Vol 29 No 1 (2019); 135-152eng
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 29 Núm. 1 (2019); 135-152spa
dc.sourceCiencia e Ingeniería Neogranadina; v. 29 n. 1 (2019); 135-152por
dc.source1909-7735
dc.source0124-8170
dc.titleCorrelation between CBR and Resistance to Unconfned Compressioneng
dc.titleCorrelación del CBR con la resistencia a la compresión inconfnadaspa
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeTexteng
dc.typeTextospa
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/3478/3335
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/3478/3360
dc.relation.references/*ref*/S. H. Carpenter, M. R. Crovetti, K. L. Smith, E. Rmeili y T. Wilson. Soil and base stabilization and associated drainage considerations. Washington D.C., United States: U.S. Department of Transportation Federal Highway Administration, Office of Technology Applications, Publication No FHWA-SA-93-004, 1992, 160 p.
dc.relation.references/*ref*/Indiana Department of Transportation. Design procedures for soil modification or stabilization. West Lafayette, United States: Division of Engineering and Asset Management Office of Geotechnical Services, Indiana Department of Transportation, 2015, 18 p.
dc.relation.references/*ref*/A. El Howayek, D. Muschett, T. Nantung, J. Lee, M. Santagata y A. Bobet. Verification of the enhanced integrated climatic module soil subgrade input parameters in the MEPDG. West Lafayette, United States, Purdue University: Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2016/08, 2016, 16 p. DOI: http://dx.doi.org/10.5703/1288284316331
dc.relation.references/*ref*/American Association of State Highway and Transportation Officials. AASHTO Guide for Design of Pavement Structures. Washington, D.C. United States, 1993, 624 p.
dc.relation.references/*ref*/C. Jung y A. Bobet. Post-construction evaluation of lime-treated soils. West Lafayette, United States, Purdue University: Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2007/25, 2008, 247 p. DOI: http://dx.doi.org/10.5703/1288284313443
dc.relation.references/*ref*/H. A. Rondón Quintana y F. A. Reyes Lizcano, “Metodologías de diseño de pavimentos flexibles: tendencias, alcances y limitaciones,” Ciencia e Ingeniería Neogranadina, Vol.17, no. 2, pp. 41-65, 2007. DOI: http://dx.doi.org/10.15446/dyna.v81n183.36981
dc.relation.references/*ref*/American Association of State Highway and Transportation Officials. Mechanistic-empirical pavement design guide, A Manual of Practice. Washington, D.C. United States, 2008, 205 p.
dc.relation.references/*ref*/G. H. Gregory y S. A. Cross, “Correlation of CBR with Shear-Strength Parameters,” en Proceedings of 9th Int. Conf. on Low-Volume Roads, 2007, pp. 1-14.
dc.relation.references/*ref*/B. R. Christopher, C. Schwartz y R. Boudreau. Geotechnical aspects of pavements. Washington D.C., United States: U.S. Department of Transportation, Federal Highway Administration, Report No. NHI-05-037, 2006, 888 p.
dc.relation.references/*ref*/Minitab 17 Statistical Software. [Computer software], Minitab, Inc. State College, United States, 2010: (https://www.minitab.com).
dc.relation.references/*ref*/ASTM D1883 – 05. Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils. ASTM International, 2005.
dc.relation.references/*ref*/ASTM D2166 – 00. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, 2000.
dc.relation.references/*ref*/ASTM D4318 – 10. Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, 2010.
dc.relation.references/*ref*/ASTM D46913 – 09. Standard Test Method for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International, 2009.
dc.relation.references/*ref*/ASTM D2216 – 10. Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, 2010.
dc.relation.references/*ref*/D. C. Montgomery, E. A. Peck y G. G. Vining. Introduction to Linear Regression Analysis. New York, United States: John Wiley & Sons, 2003, 645 p.
dc.relation.references/*ref*/W. P. M. Black, “A method of estimating the California bearing ratio of cohesive soils from plasticity data,” Géotechnique, Vol.12, no. 4, pp. 271-282, 1962. DOI: https://doi.org/10.1680/geot.1962.12.4.271
dc.relation.references/*ref*/N. B. Shirur y S. G. Hiremath, “Establishing relationships between CBR value and physical properties of soil,” IOSR Journal of Mechanical and Civil Engineering, Vol.11, no. 5, pp. 26-30, 2014.
dc.relation.references/*ref*/W. P. M. Black, “The calculation of laboratory and in-situ values of California bearing ratio from bearing capacity data,” Géotechnique, Vol.11, no. 1, pp. 14-21, 1961. DOI: https://doi.org/10.1680/geot.1961.11.1.14
dc.relation.references/*ref*/W. P. M. Black y N. W. Lister. The strength of clay fill subgrades: its prediction in relation to road performance. Crowthorne, Berkshire, UK: TRRL Laboratory Report 889, Transport and Road Research Laboratory, 1979, 30 p.
dc.relation.references/*ref*/A. W. Skempton, “The Bearing Capacity of Clays,” en Proceedings of Building Research Congress, 1951, pp. 180-190.
dc.relation.references/*ref*/W. P. M. Black. The strength of clay fill subgrades: its measurement by a penetrometer. Crowthorne, Berkshire, UK: TRRL Laboratory Report 901, Transport and Road Research Laboratory, 1979, 13 p.
dc.subject.proposalUndisturbed CBReng
dc.subject.proposalFine-Grained Soilseng
dc.subject.proposalUnconfned Compressive Strengtheng
dc.subject.proposalNatural Moistureeng
dc.subject.proposalSaturated Soilseng
dc.subject.proposalCBR inalteradospa
dc.subject.proposalsuelos de grano finospa
dc.subject.proposalresistencia a compresión inconfinadaspa
dc.subject.proposalanálisis estadísticospa
dc.subject.proposalhumedad naturalspa
dc.subject.proposalsuelo saturadospa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record