Show simple item record

dc.contributor.authorLeal Piedrahita, Erwin Alexander
dc.date.accessioned2020-01-08T19:11:42Z
dc.date.available2020-01-08T19:11:42Z
dc.date.issued2019-11-12
dc.identifierhttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/4236
dc.identifier10.18359/rcin.4236
dc.identifier.urihttp://hdl.handle.net/10654/33465
dc.descriptionThe IEC 61850 standard has contributed significantly to the substation management and automation process by incorporating the advantages of communications networks into the operation of power substations. However, this modernization process also involves new challenges in other areas. For example, in the field of security, several academic works have shown that the same attacks used in computer networks (DoS, Sniffing, Tampering, Spoffing among others), can also compromise the operation of a substation. This article evaluates the applicability of hierarchical clustering algorithms and statistical type descriptors (averages), in the identification of anomalous patterns of traffic in communication networks for power substations based on the IEC 61850 standard. The results obtained show that, using a hierarchical algorithm with Euclidean distance proximity criterion and simple link grouping method, a correct classification is achieved in the following operation scenarios: 1) Normal traffic, 2) IED disconnection, 3) Network discovery attack, 4) DoS attack, 5) IED spoofing attack and 6) Failure on the high voltage line. In addition, the descriptors used for the classification proved equally effective with other unsupervised clustering techniques such as K-means (partitional-type clustering), or LAMDA (diffuse-type clustering).eng
dc.descriptionEl estándar IEC 61850 ha contribuido notablemente con el proceso de gestión y automatización de las subestaciones, al incorporar las ventajas de las redes de comunicaciones en la operación de las subestaciones de energía. Sin embargo, este proceso de modernización también involucra nuevos desafíos en otros campos. Por ejemplo, en el área de la seguridad, diversos trabajos académicos han puesto en evidencia que la operación de una subestación también puede ser comprometida por los mismos ataques utilizados en las redes de cómputo (DoS, Sniffing, Tampering, Spoffing entre otros). Este artículo evalúa la aplicabilidad de los algoritmos de agrupamiento no supervisado de tipo jerárquico y el uso de descriptores de tipo estadístico (promedios), en la identificación de patrones de tráfico anómalo en redes de comunicación para subestaciones eléctricas basadas en el estándar IEC 61850. Los resultados obtenidos demuestran que, utilizando un algoritmo jerárquico con criterio de proximidad distancia Euclidiana y método de agrupación vínculo simple, se logra una correcta clasificación de los siguientes escenarios de operación: 1) Tráfico normal, 2) Desconexión de dispositivo IED, 3) Ataque de descubrimiento de red, 4) Ataque de denegación de servicio, 5) Ataque de suplantación de IED y 6) Falló en la línea de alta tensión. Además, los descriptores utilizados para la clasificación demostraron ser robustos al lograrse idénticos resultados con otras técnicas de agrupamiento no supervisado de tipo particional como K-medias o de tipo difuso como LAMDA (Learning Algorithm Multivariable and Data Analysis).spa
dc.formatapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Militar Nueva Granadaspa
dc.rightsDerechos de autor 2019 Ciencia e Ingeniería Neogranadinaspa
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourceCiencia e Ingenieria Neogranadina; Vol 30 No 1 (2020)eng
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 30 Núm. 1 (2020)spa
dc.sourceCiencia e Ingeniería Neogranadina; v. 30 n. 1 (2020)por
dc.source1909-7735
dc.source0124-8170
dc.titleHierarchical Clustering for Anomalous Traffic Conditions Detection in Power Substationseng
dc.titleAgrupamiento jerárquico para la detección de condiciones de tráfico anómalo en subestaciones de energíaspa
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typetexteng
dc.relation.referenceshttp://revistas.unimilitar.edu.co/index.php/rcin/article/view/4236/3392
dc.relation.references/*ref*/H. Farhangi, "The path of the smart grid," IEEE power and energy magazine, vol. 8, no. 1, pp. 18-28, 2009. https://doi.org/10.1109/MPE.2009.934876 [2] R.H. Khan & J.Y. Khan, "A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network," Computer Networks, vol. 57, no. 3, pp. 825-845, 2013. https://doi.org/10.1016/j.comnet.2012.11.002 [3] TC57, I. E. C. "IEC 61850: Communication networks and systems for power utility automation," International Electrotechnical Commission Std, vol. 53, pp. 54, 2010. [4] M.T.A. Rashid, S. Yussof, Y. Yusoff, & R. Ismail, "A review of security attacks on IEC61850 substation automation system network," in IEEE Proceedings of the 6th International Conference on Information Technology and Multimedia November, 2014, pp. 5-10. https://doi.org/10.1109/ICIMU.2014.7066594 [5] K. Choi, X. Chen, S. Li, M. Kim, K. Chae, & J, Na, "Intrusion detection of NSM based DoS attacks using data mining in smart grid". Energies, vol. 5, no. 10, pp. 4091-4109, 2012. https://doi.org/10.3390/en5104091 [6] U.K. Premaratne, J. Samarabandu, T.S. Sidhu, R. Beresh, & J.C. Tan, "An intrusion detection system for IEC61850 automated substations." IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2376-2383, 2010. https://doi.org/10.1109/TPWRD.2010.2050076 [7] J. Hoyos, M. Dehus, & T.X. Brown, "Exploiting the GOOSE protocol: A practical attack on cyber-infrastructure," In IEEE Globecom Workshops, 2012 pp. 1508-1513. https://doi.org/10.1109/GLOCOMW.2012.6477809 [8] J. Hong, C.-C. Liu, & M. Govindarasu, "Detection of cyber intrusions using network-based multicast messages for substation automation," in Innovative Smart Grid Technologies Conference (ISGT), pp. 1-5. [9] N. Kush, E. Ahmed, M. Branagan, & E. Foo, "Poisoned goose: exploiting the goose protocol," in Proceedings of the Twelfth Australasian Information Security Conference, 2014, pp. 17-22. [10] P.K. Chan, M.V. Mahoney & M.H. Arshad, "Learning rules and clusters for anomaly detection in network traffic," in Managing Cyber Threats, 2005, pp. 81-99. https://doi.org/10.1007/0-387-24230-9_3 [11] J. A. Gallardo, Análisis de datos multivariantes, [Online]. Available: http://www.ugr.es/~gallardo/, accessed July, 31, 2019. [12] G. Münz, S. Li, & G. Carle, "Traffic anomaly detection using k-means clustering," in GI/ITG Workshop MMBnet, 2007, pp. 13-14. [13] D. Liu & C.H. Lung, "P2p traffic identification and optimization using fuzzy c-means clustering," in IEEE International Conference on Fuzzy Systems (FUZZ), 2011, pp. 2245-2252.https://doi.org/10.1109/FUZZY.2011.6007613 [14] C.J. Dietrich, C. Rossow, & N. Pohlmann, "Cocospot: Clustering and recognizing botnet command and control channels using traffic analysis," Computer Networks, vol. 57, no. 2, pp. 475-486, 2013. https://doi.org/10.1016/j.comnet.2012.06.019 [15] P. Narang, C. Hota, & V. Venkatakrishnan, "Peershark: flow-clustering and conversation-generation for malicious peer-to-peer traffic identification," EURASIP Journal on Information security, vol. 2014, no. 1, p. 15, 2014. https://doi.org/10.1186/s13635-014-0015-3 [16] P. Velarde-Alvarado, C. Vargas-Rosales, R. Martinez-Pelaez, H. ToralCruz, & A.F. Martinez-Herrera, "An unsupervised approach for traffic trace sanitization based on the entropy spaces," Telecommunication Systems, vol. 61, no. 3, pp. 609-626, 2016. https://doi.org/10.1007/s11235-015-0017-6 [17] T.P. Fries, "Classification of network traffic using fuzzy clustering for network security," in Industrial Conference on Data Mining, 2017, pp. 278-285. https://doi.org/10.1007/978-3-319-62701-4_22 [18] T. Bajtoš, A. Gajdoš, L. Kleinová, K. Luˇcivjanská, & P. Sokol, "Network intrusion detection with threat agent profiling," Security and Communication Networks, 2018. https://doi.org/10.1155/2018/3614093 [19] W. Wu, J. Alvarez, C. Liu, & H.M. Sun, "Bot detection using unsupervised machine learning," Microsystem Technologies, vol. 24, no. 1, pp. 209-217, 2018. https://doi.org/10.1007/s00542-016-3237-0 [20] R. Ierusalimschy, L.H. De Figueiredo, & W.C. Filho, "Lua-an extensible extension language," Software: Practice and Experience, vol. 26, no. 6, pp. 635-652, 1996. https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P [21] J.C. Gower, "Some distance properties of latent root and vector methods used in multivariate analysis," Biometrika, vol. 53, no. 3-4, pp. 325-338, 1966. https://doi.org/10.1093/biomet/53.3-4.325 [22] H. Steinhaus, "Sur la division des corp materiels en parties," Bull. Acad. Polon. Sci, vol. 1, no. 804, p. 801, 1956. [23] J. Aguilar-Martin & R.L. De Mantaras, "The process of classification and learning the meaning of linguistic descriptors of concepts," Approximate reasoning in decision analysis, vol. 1982, pp. 165-175, 1982.
dc.subject.proposalHierarchicaleng
dc.subject.proposalclusteringeng
dc.subject.proposalunsupervisedeng
dc.subject.proposalIEC 61850eng
dc.subject.proposaltraffic detectioneng
dc.subject.proposalpower substationeng
dc.subject.proposalJerárquicospa
dc.subject.proposalagrupamientospa
dc.subject.proposalaprendizaje no supervisadospa
dc.subject.proposalIEC 61850spa
dc.subject.proposaldetección de tráficospa
dc.subject.proposalsubestación eléctricaspa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record