Mostrar el registro sencillo del ítem

dc.creatorMontoya Villegas, Julio César
dc.creatorPeña González, Ángela
dc.creatorSatizábal Soto, José María
dc.creatorGarcía-Vallejo, Felipe
dc.date2012-01-29
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rmed/article/view/1197
dc.identifier10.18359/rmed.1197
dc.descriptionUno de los retos más importantes de este siglo en la neurología genómica es construir mapas de expresión espacial de genes a lo largo de las distintas estructuras cerebrales con el fin de correlacionarlos con ciertas neuropatologías. Se analizaron los perfiles de transcripción de ocho genes HAS21 localizados en la región crítica del síndrome de Down en diferentes estructuras del cerebro humano normal. Se tomaron como referencia los valores de expresión de ocho genes HAS21/DSCR provenientes de experimentos de micromatrices de ADN de cerebros humanos normales y cuyos valores están disponibles en la base de datos del proyecto cerebro humano del Atlas del Cerebro del Allen Institute for Brain Sciences en Seattle, Washington (http://www.brain-map.org). Se determinó una expresión diferencial de estos genes HAS21/DSCR a lo largo de las estructuras localizadas en el lóbulo frontal, el lóbulo límbico y en los núcleos centrales. En el putamen, el núcleo caudado, el giro parahipocampal y en las áreas centrales se registraron los mayores niveles de transcripción global; estas áreas del cerebro parecen estar asociadas con diversos procesos de aprendizaje y de memoria. Se correlacionó la transcripción diferencial de genes DSCR con la localización cerebral y su potencial papel funcional.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rmed/article/view/1197/917
dc.relation/*ref*/Stevens CF. Neuronal diversity: too many cell types for comfort? Curr Biol. 1998; 8(20):R708-10.
dc.relation/*ref*/Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008; 11(11):1271-82.
dc.relation/*ref*/Loebrich S, Nedivi E. The function of activity-regulated genes in the nervous systen. Physiol Rev. 2009; 89:1079-103.
dc.relation/*ref*/Sutcliffe JG. mRNA in the mammalian central nervous system. Annu Rev Neurosci. 1988; 11:157-98.
dc.relation/*ref*/Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L, et al. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci USA. 2000; 97:11038-43.
dc.relation/*ref*/Geschwind DH. Mice, microarrays, and the genetic diversity of the brain. Proc Natl Acad Sci USA. 2000; 97:10676-78.
dc.relation/*ref*/Zirlinger M, Kreiman G, Anderson DJ. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc Natl Acad Sci USA. 2001; 98:5270-75.
dc.relation/*ref*/Lein ES, Zhao X, Gage FH. Defining a molecular atlas of the hippocampus using ADN microarrays and high-throughput in situ hybridization. J Neurosci. 2004;24:3879-89.
dc.relation/*ref*/McClung CA, Nestler E. Regulation of gene expression and cocaine reward by CREB and Delta Fos B. Nat Neurosci. 2003; 6:1208-15.
dc.relation/*ref*/Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, Cheng JK, et al. Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nature Biotechnol. 2010; 28(12):1279-85.
dc.relation/*ref*/Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, et al. Chromosome 21 mapping and sequencing consortium. The ADN sequence of human chromosome 21. Nature. 2000; 405:311-9.
dc.relation/*ref*/Gardiner K, Herault Y, Lott IT, Antonarakis SE, Reeves RH, Dierssen M. Down syndrome: from understanding the neurobiology to therapy. J Neurosci.2010; 30(45):14943-5.
dc.relation/*ref*/Toyoda A, Noguchi H, Taylor TD, Ito T, Pletcher MT, Sakaki S, et al. Comparative genomic sequence analysis of the human chromosome 21 Down Syndrome Critical Region. Genome Res. 2002; 12:1323-32.
dc.relation/*ref*/Eggermann T, Schönherr N, Spengler S, Jäger S, Denecke B, Binder G, et al. Identification of a 21q22 duplication in a Silver-Russell syndrome patient further narrows down the Down syndrome critical region.Am J Med Genet. 2010; 152A:356-59.
dc.relation/*ref*/Montoya JC, Soto J, Satizábal JM, Sánchez A, García-Vallejo F. Genomic study of the critical region of chromosome 21 associated to Down syndrome. Colombia Médica. 2011; 42:26-38.
dc.relation/*ref*/Cheadle C, Vawter MP, Freed WJ, Becker KG. Analysis of microarray data using Z score transformation. J Mol Diagn. 2003; 5:73-81.
dc.relation/*ref*/Liang WS, Reiman EN, Valla J, Dunckley T, Beach TG, Grover A, et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA. 2008;105:4441-46.
dc.relation/*ref*/Amano K, Sago H, Uchikawa C, Suzuki T, Kotliarova SE, Nukina N, et al. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum Mol Genet. 2004; 13:1333-40.
dc.relation/*ref*/Shao M, Liu ZZ, Wang CD, Li HY, Carron C, Zhang HW, et al. Down syndrome critical region protein 5 regulates membrane localization of Wnt receptors, Dishevelled stability and convergent extension in vertebrate enbryos. Development. 2009; 136:2121-31.
dc.relation/*ref*/Head E, Lott IT, Patterson D, Doran E, Haier RJ. Possible compensatory events in adult Down syndrome brain prior to the development of Alzheimer disease neuropathology: targets for nonpharmacological intervention. J Alzheimers Dis.2007;11:61-76.
dc.relation/*ref*/Ryu YS, Park SY, Jung MS, Yoon SH, Kwen MY, Lee SY, et al. Dyrk1A-mediated phosphorylation of Presenilin 1: a functional link between Down syndrome and Alzheimer’s disease. J Neurochem. 2010;115:574-84.
dc.relation/*ref*/Sun X, Wu Y, Chen B, Zhang Z, Zhou W, Tong Y, et al. Regu la tor of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation. J Biol Chem. 2011; 286:9049-62.
dc.relation/*ref*/Ferrando-Miguel R, Cheon MS, Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain (Part V): overexpression of phosphatidyl-inositol-glycan class P protein (DSCR5). Amino Acids. 2004; 26:255-61.
dc.relation/*ref*/Shibuya K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Shimizu N. Isolation of two novel genes, DSCR5 and DSCR6, from Down syndrome critical region on human chromosome 21q22.2. Biochem Biophys Res Commun2000; 271:693-8.
dc.relation/*ref*/Graybiel AM. The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol. 2005; 15:638-44.
dc.relation/*ref*/Packard MG, Knowlton BJ. Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci. 2002; 25:563-93.
dc.relation/*ref*/Dierssen M, Herault Y, Estivill X. Aneuploidy: from a physiological mechanism of variance to Down syndrome. Physiol Rev. 2009;89(3):887-920.
dc.relation/*ref*/Osada T, Adachi Y, Kimura HM, Miyashita Y. Towards understanding of the cortical network underlying associative memory. Philos Trans R Soc Lond B Biol Sci. 2008;363:2187-99.
dc.relation/*ref*/Potier MC, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J, et al. Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochen. 2006; 97 Suppl 1:104-9.
dc.relation/*ref*/Lee S, Lee E, Lee KH, Lee D. Predicting disease phenotypes based on the molecular networks with condition-responsive correlation. Int J Data Min Bioinform.2011; 5:131-42.
dc.relation/*ref*/Miller JA, Horvath S, Geschwind DH. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci USA.2010; 107:12698-703.
dc.relation/*ref*/O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science. 2005;309:2033-7.
dc.relation/*ref*/Morice E, Andreae LC, Cooke SF, Vanes L, Fisher EM, Tybulewicz VL, et al. Preservation of long-term memory and synaptic plasticity despite short-term impairments in the Tc1 mouse model of Down syndrome. Learn Mem.2008; 15(7): 492-500.
dc.relation/*ref*/Belichenko PV, Kleschevnikov AM, Masliah E, Wu C, Takimoto-Kimura R, Salehi A, et al. Excitatory-inhibitory relationship in the fascia dentata in the Ts65Dn mouse model of Down syndrome. J Comp Neurol.2009; 512(4): 453-66.
dc.relation/*ref*/Korbel JO, Tirosh-Wagner T, Urban AE, Chen XN, Kasowski M, Dai L, et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci USA.2009; 106: 12031-6.
dc.relation/*ref*/Prandini P, Deutsch S, Lyle R, Gagnebin M, Delucinge Vivier C, Delorenzi M, Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. Am J Hum Genet. 2007; 81:252-63.
dc.relation/*ref*/Yahya-GraisonAït E, Aubert J, Dauphinot L, Rivals I, Prieur M, Golfier G, et al. Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet. 2007; 81(3):475-91.
dc.relation/*ref*/Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet 2004; 5:725-38.
dc.relation/*ref*/Wiseman FK, Alford KA, Tybulewicz VL, Fisher EM. Down syndrome--recent progress and future prospects. Hum Mol Genet. 2009;18(R1):R75-83.
dc.relation/*ref*/Vilardell M, Rasche A, Thormann A, Maschke-Dutz E, Pérez-Jurado LA, Lehrach H, et al. Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genomics. 2011;12:229.
dc.rightsDerechos de autor 2015 Revista Medes-ES
dc.sourceRevista Med; Vol. 20 No. 1 (2012): january - june; 15-26en-US
dc.sourceRevista Med; Vol. 20 Núm. 1 (2012): enero - junio; 15-26es-ES
dc.source1909-7700
dc.source0121-5256
dc.subjectanálisis de micromatriceses-ES
dc.subjectperfilación de la expresión génicaes-ES
dc.subjectbiología computacionales-ES
dc.subjectcerebroes-ES
dc.subjectsíndrome de Downes-ES
dc.titleAnálisis sistémico IN SILICO de la expresión diferencial de genes localizados en la región crítica del síndrome de Down (DSCR) en el cerebro humanoes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem