Mostrar el registro sencillo del ítem

dc.contributor.advisorMuñoz Montoya, Juan Estebanspa
dc.contributor.advisorCarreño Rodríguez, José Nelspa
dc.contributor.authorMuñoz Montoya, Juan Esteban
dc.contributor.authorCarreño Rodríguez, José Nel
dc.contributor.authorMaldonado Moran, Miguel Ángel
dc.contributor.authorLuque Suarez, Juan Carlos
dc.coverage.spatialMedicinaspa
dc.date.accessioned2020-03-11T14:26:26Z
dc.date.available2020-03-11T14:26:26Z
dc.date.issued2020-11-07
dc.identifier.urihttp://hdl.handle.net/10654/35091
dc.description.abstractIntroducción: La Hemorragia Subaracnoidea ocupa el 5% de las consultas al servicio de urgencias. Su mortalidad antes de llegar al servicio de urgencias alcanza el 20% y en el primer mes un 40%. El vasoespasmo cerebral es la complicación más temida y más estudiada en la actualidad. Objetivo: Determinar la correlación entre las velocidades sistólicas de la arteria cerebral media evaluadas con doppler transcraneano y los niveles séricos de dióxido de carbono en pacientes con hemorragia subaracnoidea. Metodología: Estudio de corte transversal con componente analítico. Se revisaron las historias clínicas y resultados de Doppler transcraneano (velocidad sistólica de arteria cerebral media derecha (VSACMD) y velocidad sistólica de arteria cerebral media izquierda (VSACMI)) y niveles séricos de dióxido de carbono (CO2), durante los primeros 14 días en los pacientes con diagnóstico de hemorragia subaracnoidea de origen aneurismático. Se utilizó coeficiente de Correlación de Spearman / Pearson para determinar la correlación entre variables. Resultados: Se incluyó un total de 54 pacientes con hemorragia subaracnoidea de origen aneurismático. La complicación más frecuente fue vasoespasmo cerebral, presentándose en 22 pacientes (55,5%). Se realizó el coeficiente de correlación de Spearman / Pearson y se encontró, una correlación positiva entre la VSACMI y VSACMD en el grupo vasoespasmo 0.016 y grupo sin vasoespasmo de 0.000, a diferencia, no se observó una correlación entre los niveles séricos de CO2, las VSACMI y VSACMD, en el grupo de vasoespasmo: VSACMI: 0.81 y VSACMD: 0.61 y grupo sin vasoespasmo: VSACMI: 0.41 y VSACMD: 0.33 con (P >0.05). Conclusiones: En pacientes con hemorragia subaracnoidea, los niveles séricos de CO2 no se correlacionan con las velocidades sistólicas cerebrales. Este hallazgo contradice las teorías sobre la fisiología del CO2 en los vasos sanguíneos cerebrales en población sana. Se requieren más estudios para confirmar este hallazgo. PALABRAS CLAVES: Hemorragia Subaracnoidea, Aneurisma Intracraneal, Vasoespasmo Intracraneal, Ultrasonografía Doppler Transcraneal, Arteria Cerebral Media, Dióxido de Carbono.spa
dc.description.tableofcontentsTABLA DE CONTENIDO CONTENIDO 1. RESUMEN 8 2. IDENTIFICACIÓN Y FORMULACIÓN DEL PROBLEMA 9 3. OBJETIVOS 11 3.1 Objetivo Principal General: 11 3.2 Objetivos Secundarios Específicos: 11 4. METODOLOGÍA 12 a. Clasificación del diseño del estudio 12 b. Lugar donde se realiza la investigación 12 c. Características de la población estudiada: 12 d. Variables que se midieron en el estudio: 12 e. Aspectos del proceso de medición y seguimiento: 13 f. Selección de la muestra: 13 g. Criterios de Inclusión: 13 h. Criterios de Exclusión: 13 5. PLAN DE ANÁLISIS 15 6. ASPECTOS ETICOS 16 7. RESULTADOS 17 8. DISCUSIÓN 28 9. CONCLUSIÓN 35 10. BIBLIOGRAFÍA 36 LISTADO DE TABLAS Tabla 1. Características demográficas de los pacientes con hemorragia subaracnoidea de origen aneurismático 18 Tabla 2: Escalas de severidad y pronóstico en los pacientes con hemorragia subaracnoidea de origen aneurismático 19 Tabla 3: Resultados de velocidades sistólicas de arteria cerebrales medias y nivel de dióxido de carbono en los pacientes con hemorragia subaracnoidea de origen aneurismático. 20 Tabla 5: Comparación de grupos vasoespasmo vs no vasoespasmo en hemorragia subaracnoidea de origen aneurismático. 22 Tabla 6: Correlación de variables de comparación de grupos vasoespasmo vs no vasoespasmo en los pacientes con hemorragia subaracnoidea de origen aneurismático. 23 Tabla 7: Tablas de Spearman Rank para correlación de variables en el grupo de vasoespasmo en pacientes con hemorragia subaracnoidea de origen aneurismático. 24 Tabla 8: Tablas de Spearman Rank para correlación de variables en el grupo de no vasoespasmo en pacientes con hemorragia subaracnoidea de origen aneurismático 26 LISTA DE GRÁFICOS Gráfica 1. Gráfica de correlación de variables en el grupo de vasoespasmo cerebral en hemorragia subaracnoidea de origen aneurismático 25 Gráfica 2. Gráfica de correlación de variables en el grupo de no vasoespasmo cerebral en hemorragia subaracnoidea de origen aneurismático 27 LISTA DE FIGURAS Figura 1. Complicaciones agudas y subagudas de los pacientes con hemorragia subaracnoidea de origen aneurismático. 20spa
dc.formatpdfspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.language.isospaspa
dc.publisherUniversidad Militar Nueva Granadaspa
dc.rightsDerechos Reservados - Universidad Militar Nueva Granada, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.titleCorrelación del dióxido de carbono y velocidad sistólica de arteria cerebral media en los pacientes con Hemorragia Subaracnoidea espontánea de origen aneurismáticospa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.departmentFacultad de Medicinaspa
dc.type.localTrabajo de gradospa
dc.description.abstractenglishIntroduction: Subaracnoid hemorrhage occupies 5% of the consultations to the emergency department. Their mortality before reaching the emergency department reaches 20% and in the first month 40%. Cerebral vasospasm is the most feared and most studied complication today. Objective: To determine the correlation between systolic velocities of the middle cerebral artery evaluated with transcranial doppler and serum levels of carbon dioxide in patients with subarachnoid hemorrhage. Methodology: Cross-sectional study with analytical component. The medical records and results of transcranial Doppler (systolic velocity of the right middle cerebral artery (VSACMD) and systolic velocity of the left middle cerebral artery (VSACMI)) and serum levels of carbon dioxide (CO2) were reviewed during the first 14 days in Patients diagnosed with subarachnoid hemorrhage of aneurysmal origin. Spearman / Pearson Correlation coefficient was used to determine the correlation between variables. Results: A total of 54 patients with aneurysmal subarachnoid hemorrhage were included. The most frequent complication was cerebral vasospasm, presenting in 22 patients (55.5%). The Spearman / Pearson correlation coefficient was performed and a positive correlation was found between the VSACMI and VSACMD in the 0.016 vasospasm group and 0.000 vasospasm group, in contrast, no correlation was observed between the serum CO2 levels, the VSACMI and VSACMD, in the vasospasm group: VSACMI: 0.81 and VSACMD: 0.61 and group without vasospasm: VSACMI: 0.41 and VSACMD: 0.33 with (P> 0.05). Conclusions: In patients with subarachnoid hemorrhage, serum CO2 levels do not correlate with cerebral systolic velocities. This finding contradicts the theories about the physiology of CO2 in cerebral blood vessels in a healthy population. More studies are required to confirm this finding. Keywords: Subaracnoid Hemorrhage, Intracranial Aneurysm, Intracranial Vasospasm, Transcranial Doppler Ultrasonography, Middle Cerebral Artery, Carbon Dioxide.eng
dc.title.translatedCarbon dioxide correlation and systolic velocity of the middle cerebral artery in patients with spontaneous subaracnoid hemorrhage of aneurysmal originspa
dc.subject.keywordsSubaracnoid Hemorrhagespa
dc.subject.keywordsIntracranial Aneurysmspa
dc.subject.keywordsIntracranial Vasospasmspa
dc.subject.keywordsTranscranial Doppler Ultrasonographyspa
dc.subject.keywordsMiddle Cerebral Arteryspa
dc.subject.keywordsCarbon Dioxidespa
dc.publisher.programNeurocirugíaspa
dc.creator.degreenameEspecialista en Neurocirugíaspa
dc.subject.decsNEUROCIRUGIA
dc.subject.decsENFERMEDADES HEMORRAGICAS
dc.subject.decsANEURISMA INTRACRANEAL
dc.subject.decsTRASTORNOS CEREBROVASCULARES
dc.contributor.corporatenameUniversidad Militar Nueva Granadaspa
dc.contributor.corporatenameHospital Militar Centralspa
dc.description.degreelevelEspecializaciónspa
dc.publisher.facultyMedicina y Ciencias de la Salud - Neurocirugíaspa
dc.type.dcmi-type-vocabularyTextspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadasspa
dc.relation.references1. Inn FH, Rinkel GJ, Algra A, van Gijn J. Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke 1996; 27:625-9.spa
dc.relation.references2. Mayberg MR, Batjer HH, Dacey R, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 1994; 25:2315-28.spa
dc.relation.references3. Lindsay KW, Teasdale GM, Knill. Jones RP. Observer variability in assessing the clinical features of subarachnoid hemorrhage. J Neurosurg 1983; 58:57-62.spa
dc.relation.references4. de Rooij NK, Linn FH, van der Plas JA, et al. Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry. 2007; 78:1365–1372.spa
dc.relation.references5. Jalava I, Pyysalo L, Alanen M, Snicker O, Öhman J, Ronkainen A. Regional differences in the incidence of aneurysmal subarachnoid haemorrhage in Finland.Acta Neurochir (Wien). 2017 Sep; 159(9):1657-1662.spa
dc.relation.references6. Wermer MJ, van der Schaaf IC, Algra A, et al. Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke. 2007; 38:1404–1410.spa
dc.relation.references7. Van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet 2007; 369(9558):306–318.spa
dc.relation.references8. Nehls DG, Flom RA, and Carter LP, Spetzler RF. Multiple intracranial aneurysms: determining the site of rupture. J Neurosurg 1985; 63(3):342–348.spa
dc.relation.references9. Aulmann C, Steudl WI, Feldmann U. [Validation of the prognostic accuracy of neurosurgical admission scales after rupture of cerebral aneurysms]. Zentralbl Neurochir 1998; 59: 171–180.spa
dc.relation.references10. Proust F, Hannequin D, Langlois O, Freger P, Creissard P. Causes of morbidity and mortality after ruptured aneurysm surgery in a series of 230 patients. The importance of control angiography. Stroke 1995; 26:1553–1557.spa
dc.relation.references11. Yoshikai S, Nagata S, Ohara S, Yuhi F, Sakata S, Matsuno H. A retrospective analysis of the outcomes of patients with aneurysmal subarachnoid hemorrhages: a focus on the prognostic factors]. [Japanese]. No Shinkei Geka 1996; 24:733–738.spa
dc.relation.references12. Lindvall P, Runnerstam M, Birgander R, Koskinen LO. The Fisher grading correlated to outcome in patients with subarachnoid haemorrhage. Br J Neurosurg. 2009 Apr; 23(2):188-92.spa
dc.relation.references13. van Gijn J, Rinkel GJ. Subarachnoid haemorrhage: diagnosis, causes and management. Brain 2001; 124:249-78.spa
dc.relation.references14. Nieuwkamp D. J., Setz L. E., Algra A., Linn F. H., de Rooij N. K., Rinkel G. J. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. The Lancet Neurology. 2009; 8(7):635–642.spa
dc.relation.references15. Huttunen T, von und Zu Fraunberg M, Koivisto T, Ronkainen A, Rinne J, Sankila R, et al. Long-term excess mortality of 244 familial and 1502 sporadic one-year survivors of aneurysmal subarachnoid hemorrhage compared with a matched Eastern Finnish catchment population. Neurosurgery. 2011; 68:20–27.spa
dc.relation.references16. F. Danière, G. Gascou, N. Menjot de Champfleur, P. Machi, N. Leboucq, C. Riquelme, C. Ruiz, A. Bonafé, V. Costalat. Complications and follow up of subarachnoid hemorrhages. Diagnostic and Interventional Imaging (2015) 96, 677—686.spa
dc.relation.references17. Claassen J, Bernardini GL, Kreiter K, Bates J, Du YE, CopelandD, et al. Effect of cisternal and ventricular blood on risk ofdelayed cerebral ischemia after subarachnoid hemorrhage: The Fisher scale revisited. Stroke 2001; 32(9):2012—20.spa
dc.relation.references18. Consoli A., Grazzini G., Renieri L., Rosi A., De Renzis A., Vignoli C., and al. Effects of hyper-early (<12hours) endovascular treatment of ruptured intracranial aneurysms on clinical outcome Interv Neuroradiol 2013; 19 (2): 195-202.spa
dc.relation.references19. Suarez-Rivera O. Acute hydrocephalus after subarachnoid hemorrhage. Surg Neurol 1998; 49(5):563—5.spa
dc.relation.references20. Jean G. de Oliveira & Jürgen Beck & Christian Ulrich &Julian Rathert & Andreas Raabe & Volker Seifert. Comparison between clipping and coiling on the incidence of cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Neurosurg Rev (2007) 30:22–31.spa
dc.relation.references21. Fisher, C.M., Kistler, J.P., Davis, and J.M. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 1980; 6: 1-9.spa
dc.relation.references22. Safain MG, Malek AM. Delayed progressive bilateral supracli-noid internal carotid artery stenosis in a patient with a rupturedbasilar artery aneurysm. J Clin Neurosci 2015; 22:368—72.spa
dc.relation.references23. Inagawa T, Yahara K, Ohbayashi N: Risk factors associated with cerebral vasospasm following aneurysmal subarachnoid Hemorrhage. Neurol Med Chir (Tokyo) 54:465-473, 2014.spa
dc.relation.references24. Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, Holman R (2002) International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 360:1267–1274.spa
dc.relation.references25. Connolly Jr ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP,Dion J, Higashida RT, et al. Guidelines for the manage-ment of aneurysmal subarachnoid hemorrhage: a guidelinefor healthcare professionals from the American Heart Association/american Stroke Association. Stroke 2012; 43(6):1711—37.spa
dc.relation.references26. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P.Cerebral vasospasm after subarachnoid haemorrhage inves-tigated by means of transcranial Doppler ultrasound. ActaNeurochir Suppl 1988; 42:81—4.spa
dc.relation.references27. Reivich M. Arterial PCO2 and cerebral hemodynamics. Am J Physiol. 1964; 206: pp. 25–35.spa
dc.relation.references28. Kety SS, Schmidt CF. the effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest. 1948; 27: pp. 484–492.spa
dc.relation.references29. Kontos HA, Raper AJ, Patterson JL. Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels. Stroke. 1977; 8: pp. 358–360.spa
dc.relation.references30. Schmieder K, Jarus-Dziedzic K, Wronski J, Harders A.CO2 reactivity in patients after subarachnoid haemorrhage. Clinical Articles Acta Neurochirurgica. November 1997, Volume 139, Issue 11, pp 1038-104.spa
dc.relation.references31. Seller RW, Seller RW, Nirkko AC (1990) Effect of nimodipine on cerebrovascular response to CO2 in asymptomatic individuals and patients with subarachnoid hemorrhage: a transcranial Doppler ultrasound study. Neurosurgery 27:247-251.spa
dc.relation.references32. Brian JE. Carbon dioxide and the cerebral circulation. Anesthesiology 1998; 88: 1365–1386.spa
dc.relation.references33. McCulloch TJ, Turner MJ. The effects of hypocapnia and the cerebral autoregulatory response on cerebrovascular resistance and apparent zero flow pressure during isoflurane anesthesia. Anesth Analg 2009; 108: 1284–1290.spa
dc.relation.references34. Frank Grüne, Stephan Kazmaier, Robert J Stolker, Gerhard H Visser and Andreas Weyland. Carbon dioxide induced changes in cerebral blood flow and flow velocity: role of cerebrovascular resistance and effective cerebral perfusion pressure. Journal of Cerebral Blood Flow & Metabolism (2015) 35, 1470–1477.spa
dc.relation.references35. Benjamin Friedrich, Radoslaw Michalik, Anna Oniszczuk, Khalid Abubaker, Ewa Kozniewska, and Nikolaus Plesnila. CO2 has no therapeutic effect on early microvasospasm after experimental subarachnoid hemorrhage. Journal of Cerebral Blood Flow & Metabolism (2014), e1–e6.spa
dc.relation.references36. Frontera JA, Rundek T, Schmidt JM, Claassen J, Parra A, Wartenberg KE et al. Cerebrovascular reactivity and vasospasm after subarachnoid hemorrhage: a pilot study. Neurology 2006; 66: 727–729.spa
dc.relation.references37. Carrera E, Kurtz P, Badjatia N, Fernandez L, Claassen J, Lee K et al. Cerebrovascular carbon dioxide reactivity and delayed cerebral ischemia after subarachnoid hemorrhage. Arch Neurol 2010; 67: 434–439.spa
dc.relation.references38. Friedrich B, Muller F, Feiler S, Scholler K, Plesnila N. Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study. J Cereb Blood Flow Metab 2012; 32: 447–455.spa
dc.subject.proposalHemorragia Subaracnoideaspa
dc.subject.proposalAneurisma Intracranealspa
dc.subject.proposalVasoespasmo Intracranealspa
dc.subject.proposalUltrasonografía Doppler Transcranealspa
dc.subject.proposalArteria Cerebral Mediaspa
dc.subject.proposalDióxido de Carbonospa
dc.description.abstractotherIntrodução: A hemorragia subaracnoide ocupa 5% das consultas ao departamento de emergência. Sua mortalidade antes de chegar ao departamento de emergência chega a 20% e no primeiro mês a 40%. O vasoespasmo cerebral é a complicação mais temida e mais estudada atualmente. Objetivo: Determinar a correlação entre as velocidades sistólicas da artéria cerebral média avaliadas com doppler transcraniano e os níveis séricos de dióxido de carbono em pacientes com hemorragia subaracnóidea. Metodologia: Estudo transversal com componente analítico. Os registros médicos e os resultados do Doppler transcraniano (velocidade sistólica da artéria cerebral média direita (VSACMD) e velocidade sistólica da artéria cerebral média esquerda (VSACMI)) e os níveis séricos de dióxido de carbono (CO2) foram revistos durante os primeiros 14 dias em Pacientes diagnosticados com hemorragia subaracnóidea de origem aneurismática. O coeficiente de correlação de Spearman / Pearson foi utilizado para determinar a correlação entre as variáveis. Resultados: Foram incluídos 54 pacientes com hemorragia subaracnóidea aneurismática. A complicação mais frequente foi o vasoespasmo cerebral, apresentando-se em 22 pacientes (55,5%). O coeficiente de correlação de Spearman / Pearson foi realizado e foi encontrada uma correlação positiva entre o VSACMI e o VSACMD no grupo vasospasmo 0,016 e no grupo vasospasmo 0,000. Por outro lado, nenhuma correlação foi observada entre os níveis séricos de CO2; VSACMI e VSACMD, no grupo vasospasmo: VSACMI: 0,81 e VSACMD: 0,61 e grupo sem vasospasmo: VSACMI: 0,41 e VSACMD: 0,33 com (P> 0,05). Conclusões: Em pacientes com hemorragia subaracnóidea, os níveis séricos de CO2 não se correlacionam com as velocidades sistólicas cerebrais. Esse achado contradiz as teorias sobre a fisiologia do CO2 nos vasos sanguíneos cerebrais em uma população saudável. Mais estudos são necessários para confirmar esse achado. Palavras Chave: Hemorragia subaracnoide, aneurisma intracraniano, vasoespasmo intracraniano, ultrassonografia Doppler transcraniana, artéria cerebral média, dióxido de carbono.


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Militar Nueva Granada, 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Militar Nueva Granada, 2020