Show simple item record

dc.contributor.advisorAvilés Sanchez, Oscar Fernandospa
dc.contributor.advisorCaldas Flautero, Oscar Ivanspa
dc.contributor.authorAbril Bohórquez, Juan Davidspa
dc.coverage.spatialCalle 100spa
dc.date.accessioned2020-06-12T17:45:59Z
dc.date.available2020-06-12T17:45:59Z
dc.date.issued2020-01-28
dc.identifier.urihttp://hdl.handle.net/10654/35837
dc.description.abstractEste trabajo presenta el diseño de un entorno de realidad virtual, que tiene en cuenta tres niveles de presencia: personal, física y social, en una sesión de un procedimiento de neurorrehabilitación motora de miembro superior a través de un juego de aventura espacial, en el cual se registran simultáneamente señales de electrocardiografía, actividad electrodérmica y frecuencia respiratoria. Estas respuestas psicofisiológicas del Sistema Nervioso Autónomo se contrastan con un cuestionario de autoinforme emocional estandarizado, para recopilar información sobre la experiencia que el participante llena con las herramientas de selección del dispositivo Oculus Rift. El sistema es propuesto como apoyo a la terapia tradicional y alternativa de solución a problemas de metodología convencional como poca atención, sesiones monótonas y predecibles, pues combina simulación computarizada y tecnologías innovadoras para una terapia de recuperación más placentera.spa
dc.description.sponsorshipUniversidad Militar Nueva Granada - IMP-ING-2657spa
dc.description.tableofcontentsAgradecimientos Resumen 1. Capítulo 1 - Introducción 1.1. Planteamiento del problema 1.1.1. Situación actual en proceso de la discapacidad 1.1.2. Plasticidad Neuronal 1.1.3. Equipo de rehabilitación 1.1.4. Lesiones Neurológicas 1.1.5. Monitoreo por medio de señales corporales 1.1.6. Exergames 1.2. Antecedentes 1.2.1. Terapia tradicional 1.2.2. Teorías del aprendizaje motor 1.2.3. Ambientes Virtuales en Rehabilitación 1.3. Justificación 1.4. Pregunta de Investigación 1.5. Objetivos 1.5.1. Objetivo General 1.5.2. Específicos 1.6. Metodología 1.7. Organización de la Tesis 2. Capítulo 2 - Estado del Arte 2.1. Introducción 2.2. Alternativas a la Terapia tradicional 2.2.1. Robótica y Realidad Virtual aplicada en Neurorrehabilitación 2.3. Medición de Señales fisiológicas y desempeño físico del usuario 2.3.1. Señales fisiológicas 2.3.2. Señales fisiológicas no intrusivas utilizadas en realidad virtual 2.3.3. Arquitectura de sistema para rehabilitación 2.4. Conclusiones 3. Capítulo 3 - Adaptación de Procedimiento de Rehabilitación en Ambiente Virtual 3.1. Contexto 3.2. Recomendaciones generales para diseño de Exergames 3.3. Actividades para diseño del juego 3.3.1. Desarrollo del Cronograma 3.4. Materiales y Métodos 3.4.1. Participantes 3.4.2. Método de Selección de Hardware y Software 3.4.3. Hardware 3.4.4. Software 3.4.5. Tarea Virtual para Juego Serio 3.4.6. Cuestionario de Auto-Reporte 3.4.7. Registro de señales psicofisiológicas 3.4.8. Implementación 3.5. Conclusiones 4. Capítulo 4 -Desarrollo Juego Serio de Realidad Virtual 4.1. Diseño de Ambiente Virtual 4.1.1. Dinámica de Juego Serio / Objetivo del Juego 4.1.2. Arquitectura 4.1.3. Inmersión en RV 4.1.4. Elementos de Diseño del Juego 4.2. Recolección de Datos 4.2.1. Señales psicofisiológicas 4.2.2. Cuestionario de Autorreporte 4.3. Conclusiones 4.4. Direcciones para Trabajo Futuro 4.5. Contribuciones A. Anexo - Contribuciones B. Anexo - Manual de Usuario de Juego Serio B.1. Instalación B.2. Configuración B.2.1. Sistema Operativo y tarjeta de video B.2.2. Adquisición de Datos B.2.3. Programa de comunicación Unity-Matlab B.3. Modo de Operación B.3.1. Selección de Participantes B.3.2. Señales fisiológicas B.3.3. Puesta en marcha de juego serio Bibliografíaspa
dc.formatpdfspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.language.isospaspa
dc.publisherUniversidad Militar Nueva Granadaspa
dc.rightsDerechos Reservados - Universidad Militar Nueva Granada, 2019spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.5/co/spa
dc.titleDiseño de juego serio de realidad virtual con registro de señales fisiológicas no intrusivas, para el diagnóstico de función motora - Herramienta piloto para rehabilitación de miembro superiorspa
dc.typeinfo:eu-repo/semantics/masterThesisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.lembREALIDAD VIRTUALspa
dc.subject.lembREHABILITACIONspa
dc.publisher.departmentFacultad de Ingenieríaspa
dc.type.localTesis de maestríaspa
dc.description.abstractenglishThis work presents the design of a virtual reality environment, which takes into account three levels of presence: self-presence, physical and social, in a session of an upper limb motor neurorehabilitation procedure through a space adventure game, in which electrocardiography, electrodermal activity and respiratory rate signals are simultaneously recorded. These psychophysiological responses of the Autonomous Nervous System are contrasted with a standardized emotional self-report questionnaire, to gather information about experience, which is filled out by the participant with the selection tools of the Oculus Rift device. The system is proposed as support for traditional and alternative therapy to solve problems of conventional methodology such as low attention, monotonous and predictable sessions, combining computerized simulation and innovative technologies for more pleasant recovery therapy.eng
dc.title.translatedSerious virtual reality game design with recording of non-intrusive physiological signals, for the diagnosis of motor function - Pilot for upper limb rehabilitationspa
dc.subject.keywordsVirtual Realityspa
dc.subject.keywordsRehabilitationspa
dc.subject.keywordsUpper-limbspa
dc.subject.keywordsSerious Gamespa
dc.subject.keywordsTherapeutic Adherencespa
dc.publisher.programMaestría en Ingeniería Mecatrónicaspa
dc.creator.degreenameMagíster en Ingeniería Mecatrónicaspa
dc.description.degreelevelMaestríaspa
dc.publisher.facultyIngeniería - Maestría en Ingeniería Mecatrónicaspa
dc.type.dcmi-type-vocabularyTextspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadasspa
dc.relation.references[1] MinSalud. Sala Situacional Discapacidad en Colombia, 2019.spa
dc.relation.references[2] J. Loscalzo D. L. Kasper, A. S. Fauci, S. L. Hauser, D. L. Longo, J. L. Jameson. Pain and Swelling of Joints — Harrison’s Manual of Medicine, 19e — AccessMedicine — McGraw-Hill Medical.spa
dc.relation.references[3] World Health Organization (WHO. WHO — International Classification of Functioning, Disability and Health (ICF). WHO, 2019.spa
dc.relation.references[4] Peter Langhorne, Julie Bernhardt, and Gert Kwakkel. Stroke Care 2 Stroke rehabilitation. Technical report, 2011.spa
dc.relation.references[5] Peter Langhorne, Janice M. Collier, Patricia J. Bate, Matthew N.T. Thuy, and Julie Bernhardt. Very early versus delayed mobilisation after stroke. Cochrane Database of Systematic Reviews, 2018(10), 2018.spa
dc.relation.references[6] David H. Saunders, Mark Sanderson, Sara Hayes, Maeve Kilrane, Carolyn A. Greig, Miriam Brazzelli, and Gillian E. Mead. Physical fitness training for stroke patients. Cochrane Database of Systematic Reviews, 2016(3), 2016.spa
dc.relation.references[1] C English, Hillier Sl, and Lynch Ea. Circuit class therapy for improving mobility after stroke ( Review ) SUMMARY OF FINDINGS FOR THE MAIN COMPARISON. (6):CD007513, 2017.spa
dc.relation.references[8] Peter Langhorne, Fiona Coupar, and Alex Pollock. Motor recovery after stroke: a systematic review, aug 2009.spa
dc.relation.references[9] Northeastern University. Types of Neurologic Damage, 2010.spa
dc.relation.references[1] Brain Injury Association of America. Brain Injury Association of America. In Brain Injury Association of America, editor, SpringerReference. 2012.spa
dc.relation.references[11] Nurhazimah Nazmi, Saiful Amri Mazlan, Hairi Zamzuri, and Mohd Azizi Abdul Rahman. Fitting Distribution for Electromyography and Electroencephalography Signals Based on Goodness-of-Fit Tests. In Procedia Computer Science, volume 76, pages 468– 473. Elsevier B.V., 2015.spa
dc.relation.references[12] Nor Aziyatul Izni Mohd Rosli, Mohd Azizi Abdul Rahman, Saiful Amri Mazlan, and Haiti Zamzuri. Electrocardiographic (ECG) and Electromyographic (EMG) signals fusion for physiological device in rehab application. In 2014 IEEE Student Conference on Research and Development, SCOReD 2014. Institute of Electrical and Electronics Engineers Inc., mar 2014.spa
dc.relation.references[13] Stephen H. Fairclough. Physiological Computing: Interfacing with the Human Nervous System. pages 1–20. 2010.spa
dc.relation.references[14] Gregory Mone. Sensing emotions, 2015.spa
dc.relation.references[15] Augusto Garcia-Agundez, Ann Kristin Folkerts, Robert Konrad, Polona Caserman, Thomas Tregel, Mareike Goosses, Stefan Go¨bel, and Elke Kalbe. Recent advances in rehabilitation for Parkinson’s Disease with Exergames: A Systematic Review, jan 2019.spa
dc.relation.references[16] Stefan Eichhorn, V. Koller, U. Schreiber, A. Mendoza, M. Krane, and R. Lange. Development of an Exergame for individual rehabilitation of patients with cardiovascular diseases. Australasian Physical and Engineering Sciences in Medicine, 36(4):441–447, 2013.spa
dc.relation.references[17] Michael W. Rabow Maxine A. Papadakis, Stephen J. McPhee. Preface — Current Medical Diagnosis & Treatment 2019 — AccessMedicine — McGraw-Hill Medical.spa
dc.relation.references[18] Mar´ıa Dolores Onieva-Zafra, Laura Hernandez Garc´ıa, and Mayte Gonzalez Del Valle. Effectiveness of guided imagery relaxation on levels of pain and depression in patients diagnosed with fibromyalgia. Holistic Nursing Practice, 29(1):13–21, dec 2015.spa
dc.relation.references[19] Melinda Beeuwkes Buntin, Carrie Hoverman Colla, Partha Deb, Neeraj Sood, and Jos´e J. Escarce. Medicare spending and outcomes after postacute care for stroke and hip fracture. Medical Care, 48(9):776–784, sep 2010.spa
dc.relation.references[20] Michael L. Malone Robert L. Kane, Joseph G. Ouslander, Barbara Resnick. Cardiovascular Disorders — Essentials of Clinical Geriatrics, 8e — AccessMedicine — McGrawHill Medical.spa
dc.relation.references[21] Robert L. Kane. Finding the right level of posthospital care: ”We didn’t realize there was any other option for him , jan 2011.spa
dc.relation.references[22] Bruce H. Dobkin. Rehabilitation after stroke. New England Journal of Medicine, 352(16):1677–1684, apr 2005.spa
dc.relation.references[23] Steven L. Wolf, Carolee J. Winstein, J. Philip Miller, Edward Taub, Gitendra Uswatte, David Morris, Carol Giuliani, Kathye E. Light, and Deborah Nichols-Larsen. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: The EXCITE randomized clinical trial. Journal of the American Medical Association, 296(17):2095–2104, nov 2006.spa
dc.relation.references[24] Danny Decoo and Mathieu Vokaer. Treatment adherence in multiple sclerosis: A survey of Belgian neurologists. Patient Preference and Adherence, 9:1669–1676, nov 2015.spa
dc.relation.references[25] Roberto Cano de la Cuerda / Susana Collado Va´zquez. Aprendizaje motor: teor´ıas y t´ecnicas. In Editorial M´edica Panamericana, editor, Neurorrehabilitaci´on m´etodos espec´ıficos de valoraci´on y tratamiento, chapter 12, page 512. 2012.spa
dc.relation.references[26] Jack A. Adams. A closed-loop theory of motor learning. Journal of Motor Behavior, 3(2):111–150, 2013 Online.spa
dc.relation.references[27] Joshua P. Salmon, Sarah M. Dolan, Richard S. Drake, Graham C. Wilson, Raymond M. Klein, and Gail A. Eskes. A survey of video game preferences in adults: Building better games for older adults. Entertainment Computing, 21:45–64, jun 2017.spa
dc.relation.references[29] Mo´nica S. Cameir˜ao, Sergi Bermu´dez I. Badia, Esther Duarte, Antonio Frisoli, and Paul F.M.J. Verschure. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke, 43(10):2720–2728, oct 2012.spa
dc.relation.references[31] Ludymila R. Borges, Felipe R. Martins, Eduardo L.M. Naves, Teodiano F. Bastos, and Vicente F. Lucena. Multimodal System for Training at Distance in a Virtual or Augmented Reality Environment for Users of Electric-Powered Wheelchairs. IFACPapersOnLine, 49(30):156–160, 2016.spa
dc.relation.references[32] Mateus Trombetta, Patr´ıcia Paula Bazzanello Henrique, Manoela Rogofski Brum, Eliane Lucia Colussi, Ana Carolina Bertoletti De Marchi, and Rafael Rieder. Motion Rehab AVE 3D: A VR-based exergame for post-stroke rehabilitation. Computer Methods and Programs in Biomedicine, 151:15–20, nov 2017.spa
dc.relation.references[33] Maria Flakus. Psychotherapy with the boring patient - boredom as a clinical issue. 06 2016.spa
dc.relation.references[34] M Burghardt, R Wimmer, C Wolff, and C Womser-Hacker. PDDanceCity: An Exergame for Patients with Idiopathic Parkinson’s Disease and Cognitive Impairment. 2017.spa
dc.relation.references[35] Stefan G¨obel, Sandro Hardy, Viktor Wendel, Florian Mehm, and Ralf Steinmetz. Serious games for health - Personalized exergames. In MM’10 - Proceedings of the ACM Multimedia 2010 International Conference, pages 1663–1666, 2010.spa
dc.relation.references[36] Isabel Quintero Jos´e Lo´pez S´anchez. Rob´otica aplicada y realidad virtual. In Editorial M´edica Panamericana, editor, Neurorrehabilitaci´on m´etodos espec´ıficos de valoraci´on y tratamiento, pages 449–457. 2012.spa
dc.relation.references[37] Peter Lum, David Reinkensmeyer, Richard Mahoney, William Z. Rymer, and Charles Burgar. Robotic devices for movement therapy after stroke: Current status and challenges to clinical acceptance, 2002.spa
dc.relation.references[38] Roberto Colombo, Fabrizio Pisano, Silvestro Micera, Alessandra Mazzone, Carmen Delconte, M. Chiara Carrozza, Paolo Dario, and Giuseppe Minuco. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3):311–324, sep 2005.spa
dc.relation.references[39] Stephen J. Page. Intensity versus task-specificity after stroke: How important is intensity?, sep 2003.spa
dc.relation.references[40] J. H. Crosbie, S. Lennon, J. R. Basford, and S. M. McDonough. Virtual reality in stroke rehabilitation: Still more virtual than real. Disability and Rehabilitation, 29(14):1139– 1146, 2007.spa
dc.relation.references[41] Maureen K. Holden. Virtual environments for motor rehabilitation: Review, jun 2005.spa
dc.relation.references[42] Raquel Martinez Rodriguez. Disen˜o de un sistema de detecci´on y clasificacio´n de cambios emocionales basado en el an´alisis de sen˜ales fisiolo´gicas no intrusivas. page 1, 2016.spa
dc.relation.references[43] Karin Bru¨tsch, Tabea Schuler, Alexander Koenig, Lukas Zimmerli, Susan M´erillat (Koeneke), Lars Lu¨nenburger, Robert Riener, Lutz J¨ancke, and Andreas Meyer-Heim. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. Journal of NeuroEngineering and Rehabilitation, 7(1):15, dec 2010.spa
dc.relation.references[44] Philippe S. Archambault, Nahid Gheidari Norouzi, Dahlia Kairy, John M. Solomon, and Mindy F. Levin. Towards establishing clinical guidelines for an arm rehabilitation virtual reality system. Biosystems and Biorobotics, 7:263–270, 2014.spa
dc.relation.references[45] Judith E. Deutsch. Using virtual reality to improve walking post-stroke: Translation to individuals with diabetes. In Journal of Diabetes Science and Technology, volume 5, pages 309–314. SAGE Publications Inc., 2011.spa
dc.relation.references[46] Tˆania Brusque Crocetta, Luciano Vieira de Arau´jo, Regiani Guarnieri, Tha´ıs Massetti, Fernando Henrique Inocˆencio Borba Ferreira, Luiz Carlos de Abreu, and Carlos Bandeira de Mello Monteiro. Virtual reality software package for implementing motor learning and rehabilitation experiments. Virtual Reality, 22(3):199–209, sep 2018.spa
dc.relation.references[47] Carlos Bandeira de Mello Monteiro, Thais Massetti, Talita Dias da Silva, John van der Kamp, Luiz Carlos de Abreu, Claudio Leone, and Geert J.P. Savelsbergh. Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy. Research in Developmental Disabilities, 35(10):2430–2437, 2014.spa
dc.relation.references[48] Carlos Bandeira de Mello Monteiro, Talita Dias da Silva, Luiz Carlos de Abreu, Felipe Fregni, Luciano Vieira de Araujo, Fernando Henrique Inocˆencio Borba Ferreira, and Claudio Leone. Short-term motor learning through non-immersive virtual reality task in individuals with down syndrome. BMC Neurology, 17(1), apr 2017.spa
dc.relation.references[49] Jill Campbell Stewart, Shih Ching Yeh, Younbo Jung, Hyunjin Yoon, Maureen Whitford, Shu Ya Chen, Lei Li, Margaret McLaughlin, Albert Rizzo, and Carolee J. Winstein. Intervention to enhance skilled arm and hand movements after stroke: A feasibility study using a new virtual reality system. Journal of NeuroEngineering and Rehabilitation, 4, 2007.spa
dc.relation.references[50] Tyler Rose, Chang S. Nam, and Karen B. Chen. Immersion of virtual reality for rehabilitation - Review, may 2018.spa
dc.relation.references[51] Jane H. Burridge, Alan Chong W. Lee, Ruth Turk, Maria Stokes, Jill Whitall, Ravi Vaidyanathan, Phil Clatworthy, Ann Marie Hughes, Claire Meagher, Enrico Franco, and Lucy Yardley. Telehealth, Wearable Sensors, and the Internet: Will They Improve Stroke Outcomes Through Increased Intensity of Therapy, Motivation, and Adherence to Rehabilitation Programs? In Journal of Neurologic Physical Therapy, volume 41, pages S32–S38. Lippincott Williams and Wilkins, jul 2017.spa
dc.relation.references[52] Mouhannad Ali, Ahmad Haj Mosa, Fadi Al Machot, and Kyandoghere Kyamakya. Emotion recognition involving physiological and speech signals: A comprehensive review. In Studies in Systems, Decision and Control, volume 109, pages 287–302. Springer International Publishing, 2018.spa
dc.relation.references[53] Joel A. Michael, Sabyasachi Sircar, Gabriela Enriquez Cotera, and Leonora V´eliz Salazar. Fisiolog´ıa humana.spa
dc.relation.references[54] Edinson Dugarte Dugarte y Nataly Dugarte Dugarte Nelson Dugarte Jerez. Electrocardiograf´ıa de Alta Resoluci´onT´ecnicas Aplicadas de Adquisici´on y Procesamiento. Mendoza – Argentina, 2018.spa
dc.relation.references[55] Vahid Zakeri, Alireza Akhbardeh, Nasim Alamdari, Reza Fazel-Rezai, Mikko Paukkunen, and Kouhyar Tavakolian. Analyzing seismocardiogram cycles to identify the respiratory phases. IEEE Transactions on Biomedical Engineering, 64(8):1786–1792, aug 2017.spa
dc.relation.references[56] D. Ziki´c. An improved reflective photoplethysmograph probe design for detection of anˇ arterial blood flow. Journal of Medical Engineering and Technology, 32(1):23–29, jan 2008.spa
dc.relation.references[57] Darragh Egan, Sean Brennan, John Barrett, Yuansong Qiao, Christian Timmerer, and Niall Murray. An evaluation of Heart Rate and ElectroDermal Activity as an objective QoE evaluation method for immersive virtual reality environments. In 2016 8th International Conference on Quality of Multimedia Experience, QoMEX 2016. Institute of Electrical and Electronics Engineers Inc., jun 2016.spa
dc.relation.references[58] Andrea Zangiacomi, Claudia Redaelli, Francesca Valentini, and Giuseppina Bernardelli. Design of interaction in a virtual environment for post-stroke rehabilitation: A cognitive perspective. In 5th IEEE International Conference on Cognitive Infocommunications, CogInfoCom 2014 - Proceedings, pages 167–172. Institute of Electrical and Electronics Engineers Inc., jan 2014.spa
dc.relation.references[59] Thomas J Schmitz Susan B O’Sullivan. Improving Functional Outcomes in Physical Rehabilitation. 2015.spa
dc.relation.references[60] St´ephane Claude Gobron, Nicolas Zannini, Nicolas Wenk, Carl Schmitt, Yannick Charrotton, Aur´elien Fauquex, Michel Lauria, Francis Degache, and Rolf Frischknecht. Serious games for rehabilitation using Head-Mounted display and haptic devices. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9254, pages 199–219, 2015.spa
dc.relation.references[61] Mike Van Diest, Claudine Jc Lamoth, Jan Stegenga, Gijsbertus J. Verkerke, and Klaas Postema. Exergaming for balance training of elderly: State of the art and future developments, 2013.spa
dc.relation.references[62] Nina Skjæret, Ather Nawaz, Tobias Morat, Daniel Schoene, Jorunn Lægdheim Helbostad, and Beatrix Vereijken. Exercise and rehabilitation delivered through exergames in older adults: An integrative review of technologies, safety and efficacy, 2016.spa
dc.relation.references[63] Pouria Khosravi and Amir Hossein Ghapanchi. Investigating the effectiveness of technologies applied to assist seniors: A systematic literature review. International Journal of Medical Informatics, 85(1):17–26, jan 2015.spa
dc.relation.references[64] Margaret M. Bradley and Peter J. Lang. Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1):49–59, 1994.spa
dc.relation.references[65] Jos´e M. Arana, Fernando Gordillo, Jeannete Darias, and Lilia Mestas. Analysis of the efficacy and reliability of the Moodies app for detecting emotions through speech: Does it actually work? Computers in Human Behavior, 104, mar 2020.spa
dc.relation.references[66] Michele Pirovano, Elif Surer, Renato Mainetti, Pier Luca Lanzi, and N. Alberto Borghese. Exergaming and rehabilitation: A methodology for the design of effective and safe therapeutic exergames. Entertainment Computing, 14:55–65, may 2016.spa
dc.relation.references[67] Manuela Adcock, Melanie Thalmann, Alexandra Scha¨ttin, Federico Gennaro, and Eling D. de Bruin. A Pilot Study of an In-Home Multicomponent Exergame Training for Older Adults: Feasibility, Usability and Pre-Post Evaluation. Frontiers in Aging Neuroscience, 11, nov 2019.spa
dc.relation.references[68] Hyun K. Kim, Jaehyun Park, Yeongcheol Choi, and Mungyeong Choe. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Applied Ergonomics, 69:66–73, may 2018.spa
dc.relation.references[69] Oculus Inc. Oculus — Equipos y visores de realidad virtual, 2019.spa
dc.relation.references[70] bioPLUX Research. PLUX. Plux Wireless Biosignals, 2018.spa
dc.relation.references[71] Unity Inc. Unity Real-Time Development Platform — 3D, 2D VR & AR Visualizations, 2019.spa
dc.relation.references[72] Latour Bruno. Wolf Motor Function Test (WMFT), volume 53. 2019.spa
dc.relation.references[73] Timea M. Hodics, Kyle Nakatsuka, Bhim Upreti, Arun Alex, Patricia S. Smith, and John C. Pezzullo. Wolf motor function test for characterizing moderate to severe hemiparesis in stroke patients. Archives of Physical Medicine and Rehabilitation, 93(11):1963–1967, nov 2012.spa
dc.relation.references[74] Oscar I. Caldas, Juan D. Abril, Oswaldo Rivera, Carlos Rodriguez-Guerrero, and Oscar F. Avil´es. Contribution of Virtual Environments to the Perception of Balance Rehabilitation Tasks: A Psychophysiological Study. pages 1200–1207. 2020.spa
dc.subject.proposalRealidad Virtualspa
dc.subject.proposalRehabilitaciónspa
dc.subject.proposalMiembro Superiorspa
dc.subject.proposalJuego Seriospa
dc.subject.proposalAdherencia Terapéuticaspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Militar Nueva Granada, 2019
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Militar Nueva Granada, 2019