Mostrar el registro sencillo del ítem

dc.contributor.advisorDávila, Julián
dc.contributor.authorMartinez Urrutia, Wilmar
dc.date.accessioned2020-10-03T06:10:27Z
dc.date.available2020-10-03T06:10:27Z
dc.date.issued2020-07-01
dc.identifier.urihttp://hdl.handle.net/10654/36467
dc.description.abstractEl presente estudio presenta como principal objetivo, conseguir operar un bus industrial dentro de la región de la luz visible y no dentro del espectro electromagnético utilizado por Wi Fi, alcanzando velocidades iguales o mayores, con mejoras en el consumo energético y la inmunidad a las interferencias electromagnéticas. Por tal razón, esta investigación busca determinar el posible impacto de la integración del estándar industrial RS 485 con la tecnología Li-Fi, en la operatividad de un sistema ciber físico, al considerar la latencia, la capacidad, la fiabilidad y el consumo energético como parámetros de rendimiento.spa
dc.format.mimetypeapplicaction/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleEvaluación de desempeño de una red de comunicación RS485 + Li Fi en la ejecución de un sistema ciber físicospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.lembTELECOMUNICACIONESspa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.description.abstractenglishThe main objective of this study is to operate an industrial bus within the region of visible light and not within the electromagnetic spectrum used by Wi Fi, to reach speeds equal to or greater, with improvements in energy consumption and immunity to interference electromagnetic. For this reason, this research seeks to determine the possible impact of the integration of the RS 485 industrial standard with Li-Fi technology, on the operation of the cyber physical system, considering latency, capacity, accuracy, and energy consumption as parameters. performance.spa
dc.title.translatedPerformance evaluation of an RS485 + LI-FI communication network in the execution of a physical cyber systemspa
dc.subject.keywordsLedspa
dc.subject.keywordsLi-Fispa
dc.subject.keywordsRS485spa
dc.subject.keywordsCPSspa
dc.subject.keywordsWifispa
dc.subject.keywordsPerformancespa
dc.publisher.programMaestría en Ingeniería Mecatrónicaspa
dc.creator.degreenameMagíster en Ingeniería Mecatrónicaspa
dc.description.degreelevelMaestríaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.relation.referencesAlbraheem, L. I. (2018). Toward designing a li-fi-based hierarchical IoT architecture. Institute of Electrical and Electronics Engineers Inc., 40811-40825.spa
dc.relation.referencesAli, S. A. (2018). Standards for CPS. Cyber Security for Cyber Physical Systems, 161–174. doi:10.1007/978-3-319-75880-0_8spa
dc.relation.referencesApoorv, S. K. (2019). Implementation of Li-Fi Technology in Classrooms. IOP Conference Series: Materials Science and Engineering, (pág. 590). doi:10.1088/1757-899x/590/1/012044spa
dc.relation.referencesAstralpool. (2020). Guia de protocolo Modbus. Obtenido de https://au.wellindal.com/garden/astralpool/optional-kit-modbus-rtu-60363spa
dc.relation.referencesBakakeu, J. S. (2017). Building Cyber-Physical Systems - A Smart Building Use Case. Smart Cities, 605–639. doi:10.1002/9781119226444.ch21spa
dc.relation.referencesBao, X. Y. (2015). Li-Fi: Light fidelity-a survey. Wireless Networks, 1879–1889. doi:10.1007/s11276-015-0889-0spa
dc.relation.referencesBedi, G. V.-C. (2018). Review of Internet of Things (IoT) in Electric Power and Energy Systems. IEEE Internet of Things Journal, 847-870.spa
dc.relation.referencesBhanse, S. P. (2018). Li + Wi Fi: The Future of Internet of Things. 3rd International Conference on Communication and Electronics Systems (ICCES). doi:10.1109/cesys.2018.8724051.spa
dc.relation.referencesBollaín Sánchez, M. (2019). Ingeniería de instrumentación de plantas de proceso. Ediciones Díaz de Santos.spa
dc.relation.referencesCésar Augusto SALAZAR SERNA, L. C. (2011). Buses de campo y protocolos en redes industriales. Ventana informatica, 83-109.spa
dc.relation.referencesChen, C. T. (2013). Joint transmission in indoor visible light communication downlink cellular networks. IEEE Globecom Workshops, 1127-1132.spa
dc.relation.referencesCondliffe, J. (2011). Is Li-Fi ready to establish itself as the new Wi-Fi? . New Scientist. doi:10.1016/s0262-4079(11)61753-3spa
dc.relation.referencesConsejo de Estado - Sala de Consulta y Servicio Civil. (2016). Documentos para TELECOMUNICACIONES :: Espectro Electromagnético. Colombia.spa
dc.relation.referencesDeng, J. Y. (2016). A real-time VLC to UART protocol conversion system. Optoelectronics Letters, 299–303. doi:10.1007/s11801-016-6001-xspa
dc.relation.referencesElattar, M. (2020). Reliable Communications within Cyber-Physical Systems Using the Internet (RC4CPS). En Technologien Für Die Intelligente Automation. doi:10.1007/978-3-662-59793-4spa
dc.relation.referencesFarhan, L. &. (2018). Internet of Things: Vision, Future Directions and Opportunities. Smart Sensors, Measurement and Instrumentation, 331–347. doi:10.1007/978-3-319-99540-3_17spa
dc.relation.referencesFesto. (s.f.). Industrie 4.0 / IoT: productos y soluciones. Obtenido de https://www.festo.com/cms/es-co_co/56644_58344.htmspa
dc.relation.referencesFlavia C. delicato, A. A.-A.-K. (2019). Smart Cyber-Physical Systems: Towards Pervasive Intelligence systems. En Future Generation Computer Systems. sciencedirect. doi:10.1016/j.future.2019.06.031.spa
dc.relation.referencesGonzaléz, A. F. (2015). DISEÑO E IMPLEMENTACIÓN DE UN PROTOTIPO DE COMUNICACIÓN DE LUZ VISIBLE (VLC). Trabajo de grado, UNIVERSIDAD PILOTO DE COLOMBIA, Bogotá. Obtenido de http://polux.unipiloto.edu.co:8080/00002492.pdfspa
dc.relation.referencesGreenwood, G. G. (2015). Cyber-Physical Systems: The Next Generation of Evolvable Hardware Research and Applications. Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, 285–296. doi:10.1007/978-3-319-13359-1_23spa
dc.relation.referencesGuo, W. Z. (2015). The integration of CPS, CPSS, and ITS: A focus on data. Tsinghua Science and Technology, 327–335. doi:10.1109/TST.2015.7173449spa
dc.relation.referencesH. Haas, L. Y. (2016). What is LiFi? in Journal of Lightwave Technology, 1533-1544. doi:10.1109/JLT.2015.2510021spa
dc.relation.referencesH. Yaqub, M. M. (2016). LiFi: The future for indoor wireless data communication. Int. J. Sci. Eng. Res, 823-829.spa
dc.relation.referencesHaas, H. (2018). LiFi is a paradigm-shifting 5G technology. Reviews in Physics, 26-31. doi:10.1016/j.revip.2017.10.001spa
dc.relation.referencesHaas, H. C. (2017). A guide to wireless networking by light. Progress in Quantum Electronics, 88–111. doi:10.1016/j.pquantelec.2017.06.003spa
dc.relation.referencesHaas, H. S. (2020). Visible-light communications and light fidelity. Optical Fiber Telecommunications VII, 443–493.spa
dc.relation.referencesHaas, H. Y. (2020). Introduction to indoor networking concepts and challenges in LiFi. Journal of Optical Communications and Networking, A190-A203.spa
dc.relation.referencesHerwan, J. K. (2018). Cyber-physical system architecture for machining production line. IEEE Industrial Cyber-Physical Systems (ICPS). doi:10.1109/icphys.2018.8387689spa
dc.relation.referencesHoeher, P. A. (2019). Selected VLC and FSO Applications. Visible Light Communications, 223–234. doi:10.3139/9783446461727.010spa
dc.relation.referencesIEEE Std 610. (1991). IEEE Std 610 - IEEE Standard Computer Dictionary: A. IEEE Std 610, 1–217spa
dc.relation.referencesIto, H. K. (2004). High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes. IEEE Journal on Selected Topics in Quantum Electronics, 709-727spa
dc.relation.referencesJia, H. &. (2010). Research on the Technology of RS485 over Ethernet. 2010 International Conference on E-Product E-Service and E-Entertainment. doi:10.1109/iceee.2010.5660255spa
dc.relation.referencesJiménez, F. (2019). LiFi: características y retos de esta nueva tecnología. Obtenido de UNL - CIEYT: http://telecomunicaciones.edu.ec/repositorio/articulos-blog/ciencia-y-tecnologia/lifi-caracteristicas-y-retos-de-esta-nueva-tecnologiaspa
dc.relation.referencesJurczak, C. (2017). LiFi: Enlightening Communications. researchgate.net.spa
dc.relation.referencesKhan, L. U. (2017). Visible light communication: Applications, architecture, standardization and research challenges. Digital Communications and Networks, 78–88. doi:10.1016/j.dcan.2016.07.004spa
dc.relation.referencesL. I. Albraheem, L. H. (2018). Toward Designing a Li-Fi-Based Hierarchical IoT Architecture. IEEE Access, 40811-40825.spa
dc.relation.referencesLambrechts, W. &. (2019). A Theoretical Analysis of Li-Fi: A Last Mile Solution. Lecture Notes in Networks and Systems, 109–142. doi:10.1007/978-3-030-20957-5_4spa
dc.relation.referencesLee, J. B.-A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 18-23. doi:10.1016/j.mfglet.2014.12.001spa
dc.relation.referencesLi, F. Y. (2017). Quantum dot white light emitting diodes with high scotopic/photopic ratios. Optics Express, 21901-21913.spa
dc.relation.referencesLi, H. (2018). Introduction to cyber physical systems. Communications for Control in Cyber Physical Systems, 1–8. doi:10.1016/b978-0-12-801950-4.00001-9spa
dc.relation.referencesMartinez-Sala, A. &. (2002). Despliege de redes inalambricas de entornos industriales. Departamento de Tecnologías de la Información y las Comunicaciones - Universidad Politécnica de Cartagena.spa
dc.relation.referencesMehmet Fatih Isik, B. Y. (2017). Applicability of Li-Fi Technology for Industrial Automation Systems. International Journal of Electronics and Electrical Engineering, 21-25.spa
dc.relation.referencesMehta, B. R. (2015). Serial communications. Industrial Process Automation Systems, 307–339.spa
dc.relation.referencesNassiri, A. C. (2016). History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators. IEEE Transactions on Nuclear Science, 707-750.spa
dc.relation.referencesOoi, B.-Y. S. (2020). The potential of IoT for instrumentation and measurement. IEEE Instrumentation and Measurement Magazine, 21-26. Obtenido de https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085154510&doi=10.1109%2fMIM.2020.9082794&partnerID=40&md5=2cb55da352ebb42462c6f788747c9a49spa
dc.relation.referencesP. Bandela, P. N. (2014). Li-Fi (light fidelity): The next generation of wireless network. Int. J. Adv. Trends Comput. Sci. Eng., 132-137.spa
dc.relation.referencesP. Manju, M. G. (2015). Li-Fi technology light source as a hub of data transmission and projection display. J. Embedded Syst., 35-40.spa
dc.relation.referencesPerwej, Y. (2017). The next generation of wireless communication using Li-Fi (light fidelity) technology. Comput. Netw., 20-29.spa
dc.relation.referencesRaj, A. B. (2019). Historical perspective of free space optical communications: from the early dates to today’s developments. IET Communications. doi:10.1049/iet-com.2019.0051spa
dc.relation.referencesSastry, J. S. (2015). Building heterogeneous distributed embedded systems through rs485 communication protocol. ARPN Journal of Engineering and Applied Sciences, 6793-6803.spa
dc.relation.referencesSerpanos, D. (2018). The Cyber-Physical Systems Revolution. Computer, 70–73. doi:10.1109/mc.2018.1731058spa
dc.relation.referencesShamsudheen, P. S. (2016). Performance Analysis of Visible Light Communication System for Free Space Optical Communication Link. 827–833. doi:10.1016/j.protcy.2016.05.116spa
dc.relation.referencesShi, Y., Han, Q., Shen, W., & 3, H. Z. (2019). Potential applications of 5G communication technologies in collaborative intelligent manufacturing. IET Collaborative Intelligent Manufacturing , 109 – 116.spa
dc.relation.referencesSwain, K. P. (2019). Design and implementation of opto-electro decoder using photonic structure: A new application of Li-fi vis-a-vis optical embedded system. Optik, 658-663.spa
dc.relation.referencesSwami, N. V. (2016). Light Fidelity (Li-Fi): In Mobile Communication and Ubiquitous Computing Applications. Advances in Computing Applications, 75-85. doi:10.1007/978-981-10-2630-0_5spa
dc.relation.referencesSwarnkar, M. B. (2018). Architectural Building Protocols for Li-Fi (Light Fidelity). Emerging Wireless Communication and Network Technologies, 127–137. doi:10.1007/978-981-13-0396-8_7spa
dc.relation.referencesTörngren, M. A. (2017). Characterization, Analysis, and Recommendations for Exploiting the Opportunities of Cyber-Physical Systems. Cyber-Physical Systems, 3–14. doi:10.1016/b978-0-12-803801-7.00001-8spa
dc.relation.referencesTuran, B. D. (2019). Visible Light Communications in Industrial Internet of Things (IIoT). Computer Communications and Networks, 163–191. doi:10.1007/978-3-030-24892-5_8spa
dc.relation.referencesWang, L. T. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 517–527.spa
dc.relation.referencesWeis, O. (2019). Aspectos principales sobre RS485. Cómo registrar la actividad RS485. Obtenido de https://www.eltima.com/es/article/rs485-data-logger.htmlspa
dc.relation.referencesWen, C. (2017). Telemedicine, eHealth and Remote Care Systems. En Global Health Informatics: How Information Technology Can Change Our Lives in a Globalized World (págs. 168-194). doi:10.1016/B978-0-12-804591-6.00009-4spa
dc.relation.referencesWollschlaeger, M. S. (2017). The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Industrial Electronics Magazine, 17-27.spa
dc.relation.referencesWu, X. S. (2017). Access point selection for hybrid Li-Fi and Wi-Fi networks. IEEE Transactions on Communications, 5375-5385.spa
dc.relation.referencesXianhe Wang, X. Z. (2011). Introduction to cyber physical systems. International Conference on Advanced Intelligence and Awareness Internet (AIAI 2011).spa
dc.relation.referencesYang, P. Y.-Y. (2016). Taming Cross-Technology Interference for Wi-Fi and ZigBee Coexistence Networks. IEEE Transactions on Mobile Computing, 1009-1021.spa
dc.relation.referencesZhou Z., K. M. (2017). Optical Wireless Applications. En R. K.-C. Ma, Handbook of Advanced Lighting Technology (págs. 635-664). Springer, Cham.spa
dc.relation.referencesZhou, Z. &. (2017). Optical wireless applications. Springer International Publishing. doi:10.1007/978-3-319-00176-0_34spa
dc.subject.proposalLedspa
dc.subject.proposalLi-Fispa
dc.subject.proposalRS485spa
dc.subject.proposalCPSspa
dc.subject.proposalWifispa
dc.subject.proposalDesempeñospa
dc.publisher.grantorUniversidad Militar Nueva Granadaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc*
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.identifier.instnameinstname:Universidad Militar Nueva Granadaspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Militar Nueva Granadaspa
dc.identifier.repourlrepourl:https://repository.unimilitar.edu.cospa
dc.rights.localAcceso abiertospa
dc.coverage.sedeCalle 100spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/