Show simple item record

dc.contributor.advisorEdgar Afanador
dc.contributor.authorJuan Camilo Restrepo Romero, Edgar Afanador
dc.contributor.authorOscar Aviles, Diego Nuñez
dc.coverage.spatialHospital Militar Centralspa
dc.coverage.spatialUniversidad Militar Nueva Granadaspa
dc.coverage.spatialCLEMIspa
dc.coverage.temporal2017-2019spa
dc.date.accessioned2021-02-22T15:37:54Z
dc.date.available2021-02-22T15:37:54Z
dc.date.issued2018-06-20
dc.identifier.urihttp://hdl.handle.net/10654/37407
dc.description.abstractSe estudió el desempeño de una nueva técnica Inlay para la reconstrucción del ligamento cruzado posterior por medio del uso de la técnica del análisis por elementos finitos; para esto se describió el comportamiento mecánico de un ligamento cruzado posterior reconstruido basado en un autoinjerto tendinoso fijado en la tibia en el sitio anatómico y tornillo de interferencia biodegrabale en sentido postero-anterior, técnica denominada Inlay Modificada. Se determinó el comportamiento de tracción del injerto y se estudió el rendimiento mecánico de la rodilla reconstruida con esta técnica. Los resultados indicaron que el injerto de tendón semitendinoso - Gracilis (ST) usado en esta técnica  genera una resistencia similar al ligamento de una rodilla sana en un 94%. Como conclusión, el uso del análisis de elementos finitos evita pruebas invasivas y permite conocer en detalle los esfuerzos de los tejidos y dispositivos involucrados en la técnica propuesta; además, se determinó que en un ambiente silico la técnica Inlay Modificada es una técnica mecánicamente viable y una técnica reproducible para otros tipos de cirugía de rodilla.spa
dc.description.sponsorshipNAspa
dc.description.tableofcontents1. Resumen …………………………………………………………………………..……… Pag. 3 2. Marco Teórico ………………………………………………………………………….… Pag. 4 3. Identificación y Formulación del Problema ………………………………….……….. Pag. 5 4. Justificación ……………………………………………………………………….…….. Pag. 6 5. Objetivos e Hipótesis ¥ General ……………………………………………………….…………….… Pag. 7 ¥ Específicos …………………………………………..………………….…… Pag. 7 ¥ Hipótesis …………………………………………………..……….………… Pag. 7 6. Metodología ………………………………………………………………….…….…… Pag. 8 7. Cronograma …………………………………………………………………………….. pag 10 8. Aspectos éticos ………………………………………………………………………….. Pag 11 9. Anexos …………………………………………………………….…………………… Pag. 12spa
dc.format.mimetypeapplicaction/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleDesempeño biomecánico de la fijación tibial en la técnica Inlay modificada para la reconstrucción del ligamento cruzado posterior por medio del análisis con elementos finitosspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2*
dc.type.localTesis/Trabajo de grado - Monografía - Especializaciónspa
dc.description.abstractenglishA novel inlay procedure is studied in a finite analysis software and simulations varying load was carried out. The aim of this research is to describe the mechanical behavior of a reconstructed posterior cruciate ligament based on a tendon autograft fixed in the tibia and femur at the anatomic site with biodegradable interference screw, this novel technique is named as modified inlay procedure. Tensile behaviors of different materials involved in the procedure were determined and used to analyze the performance of the graft. The results indicated that treated knee with modified inlay procedure is similar of 94 % related on a healthy knee. As a conclusion, the use of finite element analysis avoids destructive tests which reduces resources and the and the novel inlay procedure in silico environment is viable and a surgical technique reproducible by other knee surgeons.spa
dc.title.translatedBiomechanical performance of tibial fixation in the modified inlay technique for reconstruction of the posterior cruciate ligament using finite element analysisspa
dc.subject.keywordsPosterior cruciate ligamentspa
dc.subject.keywordsTibial fixationspa
dc.subject.keywordsInlay techniquespa
dc.publisher.programOrtopedia y Traumatologíaspa
dc.creator.degreenameEspecialista en Ortopedia y Traumatologíaspa
dc.subject.decsOrtopediaspa
dc.subject.decsTraumatologíaspa
dc.subject.decsReconstrucción del Ligamento Cruzado Posteriorspa
dc.subject.decsLesiones del Ligamento Cruzado Posteriorspa
dc.subject.decsTendonesspa
dc.contributor.corporatenameGina Saavedraspa
dc.description.degreelevelEspecializaciónspa
dc.publisher.facultyFacultad de Medicinaspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.relation.references[1] Clayton W. Nuelle, MD Jeffrey L. Milles, MD1 Ferris M. Pfeiffer, James P. Stannard, MD Patrick A. Smith, MD Mauricio Kfuri Jr., MD, James L. Cook, “Biomechanical Comparison of Five Posterior Cruciate Ligament Reconstruction Techniques”. The Journal of Knee Surgery. 2017; 30 (06): 523-531. [2] Posterior cruciate Ligament Graft Fixation Angles, part 1. Biomechanical evaluation for anatomic single – bundle reconstruction. Nicholas Kennedy. Vol 42, No 10, 2014 [3] Bergmann, G., Bender, A., Graichen, F., Dymke, J., Rohlmann, A., Trepczynski, A., ... & Kutzner, I. (2014). Standardized loads acting in knee implants. PloS one, 9(1), e86035. [4] Beach, Z. M., Gittings, D. J., & Soslowsky, L. J. (2017). Tendon Biomechanics. In Muscle and Tendon Injuries (pp. 15-22). Springer, Berlin, Heidelberg. [5] Papalia R, Osti L, Del Buono A, Denaro V, Maffulli N.  “Tibial inlay for posterior cruciate ligament reconstruction: a systematic review. The Journal of Knee Surgery.  2010; 17(4): 264-269 [6] Nicodeme, J. D., Löcherbach, C., & Jolles, B. M. (2013). “Tibial tunnel placement in posterior cruciate ligament reconstruction: a systematic review”. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA, 22(7), 1556-62. [7] Hemang B. Panchal, M.B.B.S., M.P.H., and Jon K. Sekiya, M.D. “Open Tibial Inlay Versus Arthroscopic Transtibial Posterior Cruciate Ligament Reconstructions”. Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 27, No 9 (September). 2011; 1289-1295 [8] Rodrigo Salim, Fabricio Fogagnolo, Mauricio Kfuri Jr. “A New Simplified Onlay Technique for Posterior Cruciate Ligament Reconstruction”. The Journal of Knee Surgery.2014; 27(04): 289-294 [9] Jahan, A., & Bahraminasab, M. “Multicriteria decision analysis in improving quality of design in femoral component of knee prostheses: influence of interface geometry and material”. Advances in Materials Science and Engineering, 2015. [10] Belvedere, C., Leardini, A., Catani, F., Pianigiani, S., & Innocenti, B. “In vivo kinematics of knee replacement during daily living activities: Condylar and post‐cam contact assessment by three‐dimensional fluoroscopy and finite element analyses”. Journal of orthopaedic research, 35(7), 2017, 1396-1403 [11] Edgar William Afanador Acuña, Francisco J. Sánchez Villa. “Resultados funcionales de pacientes con reconstrucción crónica de lesiones aisladas y combinadas del ligamento cruzado posterior”. Rev Colomb Ortop Traumatol. 2016; 30(2): 67-76 [12] John D. MacGillivray, M.D., Beth E. Shubin Stein, M.D., Maxwell Park, M.D., Answorth A. Allen, M.D., Thomas L. Wickiewicz, M.D., and Russell F. Warren, M.D. “Comparison of Tibial Inlay Versus Transtibial Techniques for Isolated Posterior Cruciate Ligament Reconstruction: Minimum 2-Year Follow-up”.Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 22, No 3 (March), 2006: pp 320-328. [13] 3D models for VR / AR, 3D printing and computer graphics. (2019). CGTrader - 3D Model Store. [online] Available at: https://www.cgtrader.com/ [Accessed 24 Jan. 2019]. [14] Vallejos, D. N., Bernal, A., Mauledoux, M. F., & Aviles, O. F. (2017). Analysis of Mechanical Behavior of a Device Made of Poly L Lactide Acid for Reconstruction of Phalanx Fracture. Chemical Engineering Transactions, 57, 1357-1362. [15] Pal, S. (2014). Mechanical properties of biological materials. In Design of Artificial Human Joints & Organs (pp. 23-40). Springer, Boston, MA. [16] Bergfeld JA, McAllister DR, Parker RD, Valdevit AD, Kambic HE. A biomechanical comparison of posterior cruciate ligament reconstruction techniques. Am J Sports Med 2001;29:129-136 [17] Berg EE. Posterior cruciate ligament tibial inlay reconstruction. Arthroscopy 1995;11:69-76. [18] Kyoung-tak Kang, Et Al. Finite Element Analysis Of The Biomechanical Effects Of 3 Posterolateral Corner Reconstruction Tecniques For The Knee Joint [19] Young – Jin Seo, et Al. Graft Tension of the Posterior Cruciate Ligament using a finite element model. Knee Surg Sports Traumatol Arthosc. March 2013 [20] Ali Kiapur, Ata M. Kiapur et al. Finite Element Model Of The Knee For Investigation of Injury Mechanisms: Development and Validation. Journal of Biomechanical Engineering. JANUARY2014, Vol. 136spa
dc.subject.proposalLigamento cruzado posteriorspa
dc.subject.proposalFijación tibialspa
dc.subject.proposalTécnica INLAYspa
dc.publisher.grantorUniversidad Militar Nueva Granadaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f*
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.identifier.instnameinstname:Universidad Militar Nueva Granadaspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Militar Nueva Granadaspa
dc.identifier.repourlrepourl:https://repository.unimilitar.edu.cospa
dc.rights.localAcceso abiertospa
dc.coverage.sedeMedicinaspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/