Mostrar el registro sencillo del ítem

dc.creatorRodríguez P, Wilson
dc.creatorGarcía R., Paola A.
dc.creatorFajardo O., Alberto
dc.date2016-07-25
dc.date.accessioned2021-03-09T17:36:20Z
dc.date.available2021-03-09T17:36:20Z
dc.identifierhttp://revistas.unimilitar.edu.co/index.php/rfcb/article/view/2030
dc.identifier10.18359/rfcb.2030
dc.identifier.urihttp://hdl.handle.net/10654/37498
dc.descriptionExiste una gran diversidad de técnicas analíticas en el estudio de suelos, siendo las técnicas espectroscópicas las que mayor auge han tenido recientemente ante la necesidad de buscar metodologías que permitan estudiar adecuadamente grandes extensiones de tierra y que sean amigables con el ambiente. Por esto es necesario revisar dentro de las actuales técnicas espectroscópicas usadas en análisis de suelos cual sería la técnica más adecuada para incorporar en los servicios de extensión en suelos en Colombia bajo los lineamientos dados anteriormente. La espectroscopía infrarrojo es la técnica más pertinente para incorporar en los análisis de fertilidad de suelos en Colombia considerando su versatilidad, bajo costo y reproducibilidad. Asociando los datos de IR con el uso de análisis quimiométrico se pueden lograr estimaciones de parámetros edáficos con alto grado de certeza, con lo cual se genera una nueva estrategia de trabajo en laboratorio ambientalmente más amigable.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttp://revistas.unimilitar.edu.co/index.php/rfcb/article/view/2030/1838
dc.relation/*ref*/• Adamchuk VI, Hummel JW, Morgan MT, Upadhyaya SK. 2004. On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44: 71–91. • Alonso DL, Latorre S, Castillo E, Brandao P. 2014. Environmental ocurrence of arsenic in Colombia: A review. Environmental pollution, 186:272-281. • Amare T, Hergarten C, Hurni H, Wolfgramm B, Yitaferu B, Selassie Y. G. 2013. Prediction of soil carbon for Ethiopian highlands using soil spectroscopy. Hindawi publishing corporation. ISRN Soil Science. Vol 2013 Article ID 720589, 11 pages. • Amin M, Hall L, Chorley R, Richards K. 1998. Infiltration into soils, with particular reference to its visualization and measurement by magnetic resonance imaging (MRI). Progress in Physical Geography, 22: 136p. • Anagnostakis MJ, Hinis EP, Karangelos DJ, Petropoulos NP, Rouni PK, Simopoulos SE, Zunic ZS. 2001. Determination of depleted uranium in environmental samples by gamma spectroscopic techniques. Archive of oncology, 9: 231-236. • Antonsen F, Johnsson A, Futsaether C, Krane J. 2010. Nuclear magnetic resonance imaging in studies of gravitropism in soil mixtures. New phytologyst, 142: 59-66. • Arcila, HR, Peralta, JJ. 2015. Agentes Naturales como Alternativa para el Tratamiento del Agua. Revista Facultad de Ciencias Básicas, 11: 136-153. • Armenta S, Guardia M. 2014. Vibrational spectroscopy in soil and sediment analysis. Trends in Environmental Analytical Chemistry, 2: 43-52. • Assie, A, Abbas OAJ, Jasim AS, Al-Mashhadani AH. 2016. Advances in Applied Science Research, 7: 35-41. • Assmus A. 1995. Early history of x rays. Beam Line, summer. 10-24. • Bashagaluke J, Nshobole N, Fataki D, Mochoge B, Mugwe J, Walangululu J. 2015. Application of infrared technique in soil properties´characterization in south Kivu province of DR Congo. African Journal of Food and Technology, 6: 58-67. • Bastidas OE, Carbonell JA. 2010. Caracterización espectral y mineralógica de los suelos del valle del río Cauca por espectroscopía visible e infrarroja (400-2500 nm). Agronomía Colombiana, 28: 291-301. • Bayer J, Jaeger F, Schaumann G. 2010. Proton Nuclear Magnetic Resonance (NMR) Relaxometry in Soil Science Applications. The Open Magnetic Resonance Journal, 3: 15-26. • Becker ED. 1993. A brief history of nuclear magnetic resonance. Analytical Chemistry, 65: 295A-302A. • Belkov M, Burakov V, Giacomo A, Kiris V, Raikov S, Tarasenko N. 2010. Laser induced breakdown spectroscopy for rapid detection of carbon in soils. Publications of the Astronomical Observatory of Belgrade, 89: 173-176. • Bertolotti M. 2013. 1962-2012. : What does it mean fifty years in laser research? Romanian Reports in Physics 65: 619-637. • Bonett JP, Camacho TJH, Ramirez LL. 2015. Mid infrared spectroscopy for the estimation of some soil properties. Agronomia Colombiana, 33: 99-105. • Bonmatin J, Moineau I, Charvet C, Feche ME, Bengsch E.R. 2003. A LC/APCI-MS Method for Analysis of Imidacloprid in soils, in plants, and in pollens. Analytical Chemistry, 75: 2027-2033. • Bumbrah GS, Sharma, RM. 2015. Raman spectroscopy-Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egyptian Journal of Forensic Sciences. In press. doi:10.1016/j.ejfs.2015.06.001 • Bustos RH, Oyola LD, Rojas MYA, Rivera PM, Pérez AGA. 2012. Characterization of mineral phases of agricultural soil samples of Colombian coffee using Mossbauer spectroscopy and X ray diffraction. Hyperfine interactions. Doi: 10.1007/s10751-012-0573-z. • Cade-Menun B. 2005. Characterizing phosphorus in environmental and agricultural samples by P-31 nuclear magnetic resonance spectroscopy. Talanta, 66: 359–371. • Cai P, Huang QY, Zhang XW. 2006. Interactions of DNA with clay minerals and soils colloidal particles and protection against degradation by DNase. Environmental Science & Technology, 40: 2971-2976. • Camacho TJH, Rubiano SY, Hurtado SM. 2014. Near infrared (NIR) diffuse reflectance spectroscopy for the prediction of carbon and nitrogen in an oxisol. Agronomia colombiana, 32: 86-94. • Carrero B, Casermeiro M, Gonzalez S. 2010.Evaluación mediante resonancia magnética de la porosidad del suelo tras la aplicación de lodos depuradora. Spanish Journal of Rural Devolopment, 1: 83-89. • Carrero B, De La Cruz MT, Casermeiro MA. 2012. Application of Magnetic Resonance Techniques to evaluate soil compaction after grazing. Journal of Soil Science and Plant Nutrition, 12: 165-182. • Castilla C, Gutiérrez A, Ramírez L. 2010. Taller Latinoamericano Globalsoilmap.net Atlas de Suelos LAC. Red de Cultivos Permanentes. Rio de Janeiro. EMBRAPA. 26p. • Chabrillat S, Ben-Dor E, Viscarra RAR, Dematté JA. 2013. Quantitative soil spectroscopy. Applied and Environmental Soil Science. Vol 2013 article ID 616578, 3 pages. • Clemente J, Gregorich E, Simpson R, Courtier D, Simpson M. 2012. Comparison of nuclear magnetic resonance methods for the analysis of organic matter composition from soil density and particle fractions . Environmental Chemistry, 9: 97-107. • Conte P, Piccolo A. 2007. Espectroscopía de resonancia magnética nuclear de estado sólido: una herramienta para caracterizar materia orgánica natural y muestras del suelo. Principios básicos. Óptica Pura y Aplicada, 40: 215-226. • Ćorluka V, Hederić Ź, Hadźiselimović M. 2011. Moisture measurement in solid samples using Raman Spectroscopy. Przeglad Elektrotechniczny (Electrical Review), 87: 25-28. • Cunha TJF, Novotny EH, Madari BE, Martin-Neto L, Rezende MOO, Canelas LP, Benites VM. 2009. Spectroscopy Characterization of Humic Acids Isolated from Amazonian Dark Earth Soils (Terra Preta De Índio. En: Woods WI; Teixeira WG; Lehman J; Steiner C, Winklerprins A; Rebellato L. (Ed.). Amazonian dark earths: wim sombroek's vision. Berlin: Springer, Cap 20 . p. 363-372. Embrapa • Das R, Ali Md, Hamid SB. 2014. Current applications of X-ray powder diffraction–A review. Reviews on Advanced Materials Science, 38: 95-109. • Davis R, Mauer LJ. 2010. Fourier transform infrared (FT-IR) spectroscopy: A rapid tool for detection nd analysis of foodborne pathogenic bacteria. Current research, Technology and education Topics in Applied Microbiology and microbial Biotechnology. A. Mendez-Vilas (Ed.) Formatex 1582-1594. • Derrick MR, Stulik D, Landry JM. 1999. Infrared spectroscopy in conservation science. The Getty conservation Institute, Los Angeles, 236 p. • Deslattes RD. 2000. High resolution γ- ray spectroscopy: the first 85 years. Journal of Research Institute of Standards and Technology. 105: 1-9. • Dick DP, Leite SB, Dalmolin RSD, Almeida HC, Knicker H. 2011. Pinus afforestation in south Brazilian highlands: soil chemical attributes and organic matter composition. Scientia Agricola (Piracicaba, Brazil), 68: 175-181. • Dickson DPE, Berry FJ. 1986. Mössbauer spectroscopy. Cambridge University Press. Trowbrigde, Wiltshire. 270p. • Drees JC, Wu HBA. 2010. Analytical techniques. p. 130-165. En: Bishop, M. L., Fody, E. P. Schoeff, L.E (Eds.). Clinical chemistry: techniques, principles, correlations. 6th ed. Lybrary of Congresss Cataloging in Publications Data. Baltimore, 705 p. • Drewsen M. 2002. Notes on laser Hazard. 16p. • Enev V, Pospíšilová Ľ, Klučáková M, Liptaj T, Doskočil L. 2014. Spectral Characterization of Selected Humic Substances. Soil & Water Research, 9: 9–17. • Fan TW, Lane EN, Chekmenev E, Wittebort RJ, Higashi RM. 2004. Synthesis and physico chemical properties in soil humic substances. The Journal of Peptide Research 63: 253-264. • Fasurová N, Pospíšilová L. 2010. Characterization of soil humic substances by ultraviolet-visible and synchronous fluorescence spectroscopy. Journal of Central European Agricultura, 11: 351-358. • Feyziyev F, Babayev M, Priori S, L´Abate G. 2016. Using visible-near infrared spectroscopy to predict soil properties of mugan plain, Azerbaijan. Open Journal of Soil Science. 6: 52-58. • Fierãscu RC, Dimitriu I, Munteanu V. 2007. Monitoring of soils charged with heavy metals. Analele Universitãtii din Bucureşti-Chime Anul XVI (serie noua). I, 87-92. • Fonte SJ, Nesper M, Hegglin D, Velásquez JE, Ramírez B, Rao IM, Bernasconi SM, Bunemann EK, Frossard E, Oberson A. 2014. Pasture degradation impacts soil phosphorus storage via changes to aggregate-associated soil organic matter in highly weathered tropical soils. Soil Biology& Biochemistry, 68: 150-157. • García J, Ballesteros M. 2005. Evaluación de parámetros de calidad para la determinación de carbono orgánico en suelos. Revista Colombiana de Química, 34: 201-209. • Gillespie AW, Walley FL, Farrell RE, Leinweber P, Regier T, Blyth RIR. 2007. N and C K-edge XANES spectroscopy of Rhizosphere and non-Rhizosphere soils. Earth and Environmental science. Canadian Ligth Source. Activity Report, 76-77p • Griffiths J. 2008. A brief history of mass spectrometry. Analytical chemistry, 80: 5678-5683. • Haney RL Jin VL, Johnson MVV, Haney EB, Harmel RD, Arnold JG, White MJ. 2015. Analysis methods for the determination of anthropogenic additions of P to agricultural soils. Open Journal of Soil Science, 5: 59-68. • Haque MD. E, Nairuzzaman M, Imam MH. 2013. X-ray diffraction studies of some Madhupur clay samples of savar and Dhaka of Bangladesh with special emphasis on clay minerals. International Journal of Scientifica & Technology Research, 2: 174-180. • Hassouna M, Théraulaz F, Massiani C. 2012. Production and elimination of water extractable organic matter in a calcareous soil as assessed by UV/Vis absorption and fluorescence spectroscopy of its fractions isolated on XAD-8/4 resins. Geoderma, 189–190: 404–414. • He Z, Ohno T, Wu F, Olk DC, Honeycutt CW, Olanya M. 2008. Capillary Electrophoresis and Fluorescence Excitation-Emission Matrix Spectroscopy for Characterization of Humic Substances. Soil Science Society of America Journal, 72: 1248-1255. • Huang C, Liu S, Li R, Sun F, Zhou Y, Yu G. 2016. Spectroscopic evidence of the improvement of reactive iron mineral content in red soil by long term application of swine manure. Public Library of Science ONE. Doi: 10.1371/Journal.pone.0146364. 15 p. • Huang Q, Zhu J, Qjao X, Cai P, Rong X, Liang W, Cheng W. 2009. Conformation, activity and proteolytic stability of acid phosphatase on clay minerals and soil colloids from an alfisol. Colloids Surf. B Biointerfaces, 74: 279-283. • Jaramillo D. 2004. El recurso suelo y la competitividad del sector agrario colombiano. Competitividad del sector agrario colombiano: posibilidades y limitaciones. Medellín. Universidad Nacional. 26p. • Jenkins R. 2000. X ray techniques : overview. 13269-13288. En: Encyclopedia of Analytical Chemistry, Meyers RA (Ed.) Jhon Wiley & Sons Ltd. Chichester. • Jimenez A, Ravelo D, Gomez J. 2010. sistemas de adquisición, almacenamiento y análisis de información fenológica para el manejo de plagas y enfermedades de un duraznero mediante tecnologías de agricultura de precisión. Revista Tecnura, 14: 41-51. • Junk MJN. 2012. Electron Paramagnetic resonance theory. Chapter 2. 7-52p. En: assesing the functional structure of molecular transporter by EPR spectroscopy. Springer-Verlag. Theses. Berlin. 212p. • Kovacs H, Moskau D, Spraul M. 2005. Cryogenically cooled probes-a leap in NMR technology. Progress in Nuclear Magnetic Resonance Spectroscopy, 46, 131-155. • Kulkarni Y, Warhade KK, Bahekar S. 2014. Primary nutrients determination in the soil using UV spectroscopy. International Journal of Emerging Engineering Research and Tecnology, 2: 198-204. • Kuś S, Marczenko Z, Obarski. N. 1996. Derivative UV VIS spectrophotometry in analytical chemistry. Chemia analityczna. (Warsaw) 41, 899-927. • Lasia A. 1999.Electrochemical impedance spectroscopy and its applications. 1-53p. En: Application, modern aspect of electrochemistry. Conway BE, Bockris J, White RE (ed.). kluver academic/plenum publishers, New York, 32, 143-248. • Lewicka SD, Dyckmans J, Kaiser J, Marca A, Augustin J, Well R. 2016. Biogeosciences, 13: 1129-1144. • Li X, Wang X, Zhao Q, Zhang Y, Zhou Q. 2016. In situ representation of soil/sediment conductivity using electrochemical impedance spectroscopy, Sensor 16: 1-9. • Linker R. 2008. Soil Classification via mid-infrared spectroscopy. En IFIP International Federation for information Processing, Vol 259; Computer and Computing Technologies in Agriculture. Vol. 2; Daoliang Li; (Boston; Springer), pp. 1137-1146. • Linker R. 2012. Application of FTIR Spectroscopy to Agricultural Soils Analysis. Capitulo 8. En: Fourier Transforms - New Analytical Approaches and FTIR Strategies. Faculty of Civil and Environmental Engineering Technion – Israel Institute of Technology Israel. 21p. • Lizarazo SIA, Alfonso COA. 2011. Aplicaciones de la agricultura de precisión en palma de aceite "Elaeis guineensis" e hibrido Ox G. Revista de Ingeniería. Universidad de los Andes. Ene-Jun. 124-130. • Lokhande VN. Deshmukh RR. 2016. Monitoring arsenic contamination in agriculture soil using spectroradiometer. International Journal of Innovative Research in Sciences, Engineering and Technology, 5: 5508-5513. • López S, Mejía J, Pareja J, Molina A. 2011. Efecto de la humedad, el tamaño de partícula y la forma de preparación de la muestra sobre la señal de Mg I en espectroscopía de plasma generados por láser (LIBS) en muestras de suelos. Puente Revista Científica. Universidad Pontifica Bolivariana, 5:15-20. • Lu P, Wang L, Zheng N, Linghao L, Wenhao Z. 2013. Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery. Journal of Geochemical Exploration, 132: 26–33. • Luiza A, Meire J, Roberto C, Albertino J. 2012. Isotope determination of sulfur by mass spectrometry in soil samples. Revista Brasileira de Ciěncia do Solo, 36:1787-1793. • Luna AS, Lima ICA, Rocha WFC, Araujo JR, Kuznetsov A, Ferreira EHM, Boqué R, Ferré J. 2014. Classification of soil samples based on Raman spectroscopy and X ray fluorescence spectrometry combined with chemometrics methods and variable selection. Analytical Methods, 6: 8930-8939. • Mahajan GR, Sahoo RN, Pandey RN, Gupta VK, Kumar D. 2014. Using Hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.) Precision Agriculture, 15: 499-522. • Makarov MI, Haumaier L, Zech W, Marfenina OE, Lysak LV. 2005. Can 31P RMN spectroscopy be used to indicate the origins of soil organic phosphates?. Soil Biology & Biochemistry, 37: 15-25. • Martínez HE, Fuentes EJ, Acevedo HE. 2008. Carbono orgánico y propiedades del suelo. Revista de la Ciencia del Suelo y Nutrición Vegetal, 8: 68-96. • Martínez S, Bonilla M, López H. 2015. Lista de Orchidaceae de Santander y comentarios sobre sus especies endémicas. Revista Facultad de Ciencias Básicas, 11 (2): 54-111. • Marzaioli F, Lubritto C, Delgaldo I, Donofrio Á, Cotrufo F. 2009. Comparison of different soil organic matter fractionation methodologies: evidences from ultrasensitive 14C measurements. Nuclear Instruments and Methods in Physics Research B, 268: 1062-1066. • Melo VF, Schaefer CEGR, Uchoa SCP, Simoes ML, Neto LM, Junior JFV. 2011. Electron paramagnetic resonance and thermogravimetric characterization of humic acids in nutrient-rich soils from the raposa Serra do sol indian reserve, Roraima, Brazil. Interciencia, 36: 450-455. • Morugán CA, Arcenegui V, García OF, Mataix SJ, Mataix BJ. 2013. Application of soil quality indices to asses the status of agricultural soils irrigated treated wastewaters. Solid Earth, 4: 119-127 • Mosquera CS, Martínez MJ, Guerrero JA, Hansen EW. 2010. Caracterización estructural de la matería orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia. Revista Colombiana de Química, 39: 47-60. • Neetu K, Ankit G, Ruchi T, Ajay B, Prashant B. 2012. A review on mass spectrometry detectors. International Research Journal of Pharmacy. 3(10) 33-42 • Nevidomskaya D, Minkina T, Soldatov A, Motuzova G, Podkovyrina Y. 2014. Usage of X ray absorption spectroscopy and extractive fractionation in studies of the Cu (II) and Zn (II) ions in soils. Eurasian Journal of Soil Science, 3: 238-244. • Nocita M, Stevens A, Wesemael B, Van, Aitkenhead M, Bachmann M, Barthès B, Dor E, Brown D.J, Clairotte M, Csorba A, Dardenne P, Demattê JA. M, Genot V, Guerrero C, Knadel M, Montanarella L, Noon C, Ramirez L.L, Robertson J, Sakai H, Soriano-Disla JM, Shepherd KD, Stenberg B, Towett EK, Vargas R, Wetterlind J. 2015. Chapter Four-Soil spectroscopy: An alternative to wet chemistry for soil monitoring. Advances in Agronomy, 132: 139-159. • Nogueira OR, Ignácio AC, Salvio MA. 2009. The use of total luminiscence spectroscopy in the investigation of the effects of different rice mangement prectices on humic substances of a planosol. Revista Brasileira de Ciencia do Solo, 33: 1147-1152. • Ogundalu AO, Oyekan GL. 2014. Mineralogical and geotechnical characterization of maidaguri black cotton soil by X-ray diffraction (XRD), x-ray photoelectron (XPS) and scanning electron spectroscopy (SEM). International Journal of Engineering and Technology, 4: 345-353. • Oliveros BA, Macias FA, Marin D, Molinillo JMG, Barbosa LCA, Demuner AJ. 2012. Cinética y mecanismo de la degradación en suelo de la 2-hidroxi-(2H)-1,4-benzoxazin-3(4H)-ona, un aleloquímico fitotóxico de las gramíneas. Avances en Ciencias e Ingeniería, 3: 47-67. • Pareja J, López S, Jaramillo D, Hahn DW, Molina A. 2013. Laser ablation–laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils. Applied Optics, 52: 2470-2477. • Parikh SJ, Goyne KW, Margenot AJ, Mukome FND, Calderon FJ. 2014. Soil chemical insights provided through vibrational spectroscopy. Publication from USDA-ARS/UNI. Faculty. Paper 1471. • Patterson G, Day R, Piston D. 2001. Fluorescent protein spectra. Journal of Cell Science, 114: 837-838. • Pohlmeier A, Vergeldt F, Gerkema E. 2010. MRI in Soils: Determination of Water Content Changes Due to Root Water Uptake by Means of a Multi-Slice-Multi-Echo Sequence (MSME). The Open Magnetic Resonance Journal, 3: 69-74. • Purmalis O, Klavins M. 2013. Comparative study of peat humic acids by using uv spectroscopy. 1st Annual International Interdisciplinary Conference AIIC, 24-26 April, Azores, Portugal - Proceedings. 857-866p. • Qui J, Darilek J, Huang B, Zhao Y, Sun W, Gu Z. 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149: 325–334. • Ramadan, BN. 2011. Sample preparation for flame atomic absorption spectroscopy: an overview. RASĀYAN Journal of Chemistry, 4: 49-55. • Rewald B, Meinem C. 2013. Plant roots and spectroscopic methods-analysing species, biomass and vitality. Frontiers in Plant Science, 4: 1-9. • Roach N, Reddy KR. 2004. Review of X-ray, electron beam and spectroscopy methods for characterization of contaminated soils. Trends in Soil Science 3, 1-18. • Saikia BJ, Parthasarathy, G. 2010. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. Journal of Modern Physics 1, 206-210. • Saito B, Seckler MM. 2014. Alkaline extraction of humic substances from peat applied to organic-mineral fertilizer production. Brazilian Journal of Chemical Engineering, 31: 675–682. • Santos JV, Mangrich AS, Pereira BF, Pillon CN, Novotny EH, Bonagamba TJ, Abb-Braun G, Frimmel FH. 2013. 13C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation. Joufrnal of the Brazilian Chemical Society, 24: 320-326. • Sauer M, Hofkens J, Enderlein J. 2011. Handbook of fluorescence spectroscopy and imaging. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim. 282p. • Schmid T, Rodriguez RM, Escribano P, Palacios OA, Ben DE, Plaza A, Milewski R, Huesca M, Bracken A, Cicuéndez V, Pelayo M, Chabrillat S. 2016. Characterization of soil erosion indicators using hyperspectral data from a mediterranean rainfed cultivated region. IEEE Journal of Selected topics in Applied Earth Observations and Remote Sensing, 9: 845-860. • Schwartz G, Eshel G, Ben-Dor E. (2011). Reflectance Spectroscopy as a Tool for Monitoring Contaminated Soils, Soil Contamination, MSc Simone Pascucci (Ed.), ISBN: 978-953-307-647-8, InTech, 180p. • Segal E, Shouse P.J, Bradford S.A, Skaggs TH, Corwin DL. 2009. Measuring particle size distribution using laser diffraction: implications for predicting soil hydraulic properties. Soil Science, 174 (12): 639-645p. • Shepherd KD. 2010. Soil spectral diagnostics-infrared, x-ray and laser diffraction spectroscopy for rapid soil characterization in the Africa soil information service. 19th World congress of soil science, soil solutions for a changing world. Brisbane, Australia, 24-27. • Shiferaw A, Hergarten C. 2014. Visible near infra-red (VisNIR) spectrocopy for predicting organic carbon in Ethiopia. Journal of Ecology and the Natural Environment, 6: 126-139. • Sparks DL. 2006. Advances in elucidating biogeochemical processes in soils: it´s about scale and interfaces. Journal of Geochemical Exploration, 88: 243-245. • Štěpánek P, Bouř P. 2011. Application of magnetic circular dichroism for studies or organic molecules. WDS´11 Proceeding of contributed papers, Part III, 177-181. • Tadini AM, Pantano G, Toffoli AL, Fontaine B, Spaccini R, Piccolo A, Moreira AB, Bisinoti MC. 2015. Off-line TMAH-GC/MS characterization of humic substances extracted from river sediments of borthwestern Sao Paulo under different soil uses. Science of the Total Environment, 506-507: 234-240. • Tian Y, Zhang J, Weixing C, Yan Z. 2013. Laboratory assessment of three quantitative methods for estimating the organic matter content of soils in China based on visible/near-infrared reflectance spectra. Geoderma, 202–203: 161– 170. • Towet EK, Shepherd KD, Cadisch G. 2013. Quantification of total element concentrations in soils using total X ray fluorescence spectroscopy (TXRF). Science of the Total Environment, 463-464: 374-388. • Trujillo Q, Mejia SME, Bravo CJA, Ceron LML, Rufasto E. 2011. Avances en la caracterización mineralógica de los suelos del rio Chancay, Lambayeque, por difractometria de rayos X y espectroscopia Mössbauer. Revista de Investigación de Física, 14: 1-5. • Udenfriend S. 1995. Development of the spectrophotofluorometer and its commercialization. Protein Science, 4: 542-551. • Urbano MFA. 2013. Redes de sensores inalambricos aplicadas a optimizacion en agricultura de precision para cultivos de cafe en colombia. Journal de Ciencia e Ingeniería, 5: 46-52. • Wang J, He T, Lv CH, Chen Y, Jian W. 2010. Mapping soil organic matter based on land degradation spectral response units using Hyperion images. International Journal of Applied Earth Observation and Geoinformation, 12S: S171–S180. • Wasson A, Bischof L, Zwart A, Watt M. 2016. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field. Journal of Experimental Botany. doi: 10.1093/jxb/erv570. 11p. • Willis JB. 1993. The Birth of the atomic absorption spectrometer and its early applications in clinical chemistry. Clinical Chemistry, 39: 155-160. • Willman C. 2006. Applications of gamma ray spectroscopy of spent nuclear fuel for safeguards and encapsulation. Dissertation. Faculty of science and technology. Uppsala university. Uppsala. Sweden. 79 p. • Yong W, Peng G, Liang Z. 2010. A Spectral Index for Estimating Soil Salinity in the Yellow River Delta Region of China Using EO-1 Hyperion Data. Pedosphere, 20: 378–388. • Yücesoy C. 2000. Determination of some parameters which affect the accuracy and precision in UV VIS spectrophotometry. Journal of Faculty of Pharmacy of Ankara, 29: 7-18. • Zamudio A, Carrascal C, Pulido J, Gallardo E, Ávila M, Vargas A, Vera D. 2006. Métodos analíticos de laboratorio de Suelos. 6ª ed. Instituto Geográfico Agustín Codazzi (IGAC). Bogotá. D.C. 648p.
dc.rightsDerechos de autor 2016 Revista Facultad de Ciencias Básicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourceRevista Facultad de Ciencias Básicas; Vol. 12 No. 2 (2016); 228-251en-US
dc.sourceRevista Facultad de Ciencias Básicas; Vol. 12 Núm. 2 (2016); 228-251es-ES
dc.source2500-5316
dc.source1900-4699
dc.subjectUltravioletaes-ES
dc.subjectinfrarrojoes-ES
dc.subjectrayos Xes-ES
dc.subjectresonancia magnética nucleares-ES
dc.subjectespectometría de masases-ES
dc.titleAplicaciones de técnicas espectroscópicas para el análisis de sueloses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem