Show simple item record

dc.creatorHernández Páez, Dairo José
dc.creatorRestrepo Leal, Diego
dc.creatorEscorcia Salas, Gene Elizabeth
dc.date2020-03-24
dc.date.accessioned2021-03-09T17:37:26Z
dc.date.available2021-03-09T17:37:26Z
dc.identifierhttp://revistas.unimilitar.edu.co/index.php/rfcb/article/view/3466
dc.identifier10.18359/rfcb.3466
dc.identifier.urihttp://hdl.handle.net/10654/37610
dc.descriptionThe present paper reports first principle calculations to assess the adsorption and diffusion of a Nb atom on a 2×2 AlN(0001) surface constructed with the supercell model. These calculations solve the Kohn-Sham equations over a base of plane waves and atomic pseudopotentials, using the Generalized Gradient Approximation to describe electron-electron interaction within the framework of the Density Functional Theory. In addition, the most favorable adsorption model is assessed through the T1, T4, and H3 high symmetry sites. Based on this, it is found that the most favorable energy structures are those of a Nb atom located at the H3 and T4 sites, while the adsorption of Nb on an aluminum atom (T1 site) is unfavorable. The diffusion of Nb on the surface denotes an activation energy of 0.453 eV from T4 toward H3. The results from adsorbate–surface reconstructions at different high symmetry points exhibit a lateral relaxation of a few hundredths of an Angstrom unit against its most stable configuration. Lastly, the study compares the density values of the different AlN(0001) clean surface states and assesses the reconstructions that denote greater energy favorability.en-US
dc.descriptionSe reportan cálculos de primeros principios con el fin de analizar la adsorción y la difusión de un átomo de Nb en la superficie AlN (0001) con una geometría 2 × 2, la cual se construye con el modelo de supercelda. En los cálculos se resuelven las ecuaciones de Konh-Sham con una base de ondas planas y pseudopontenciales atómicos, para lo cual se utiliza la aproximación del gradiente generalizado (GGA) para describir la interacción electrón-electrón, dentro del marco de la teoría del funcional de la densidad (DFT). Con el propósito de estudiar el modelo de adsorción más favorable, se consideran los sitios de alta simetría T1, T4 y H3. Se encuentra que las estructuras energéticamente más favorables corresponden a la de un átomo de Nb localizado en los sitos H3 y T4, mientras que la adsorción del Nb sobre un átomo de aluminio (sitio T1) es desfavorable. La difusión del Nb sobre la superficie muestra una energía de activación de 0.453 eV de T4 hacia H3. Los resultados de las reconstrucciones adsorbato-superficie en los diferentes puntos de alta simetría presentan una relajación lateral de unas centésimas de angstrom con relación a su configuración más estable. Finalmente, se comparan la densidad de estados de la superficie limpia AlN(0001) y las reconstrucciones que presentan mayor favorabilidad energética.es-ES
dc.descriptionO presente artigo relata cálculos de primeiros princípios para avaliar a adsorção e a difusão de um átomo de Nb na superfície AlN(0001) de geometria 2×2 construída com o modelo de supercélula. Esses cálculos resolvem as equações de Konh-Sham com uma base de ondas planas e pseudopotenciais atômicos, usando a aproximação do gradiente generalizado (GGA) para descrever a interação elétron-elétron, dentro da abordagem da teoria do funcional de densidade (DFT). Com o objetivo de avaliar o modelo de adsorção mais favorável, consideram-se os locais de alta simetria T1, T4 e H3. Com base nisso, constatou-se que as estruturas energeticamente mais favoráveis correspondem às de um átomo de Nb localizado nos locais H3 e T4, enquanto a adsorção do Nb sobre um átomo de alumínio (local T1) é desfavorável. A difusão do Nb sobre a superfície indica uma energia de ativação de 0,453 eV de T4 para H3. Os resultados das reconstruções adsorbato-superfície nos diferentes pontos de alta simetria apresentam um relaxamento lateral de alguns centésimos de ångström em relação à configuração mais estável. Por fim, o estudo compara os valores de densidade de diferentes estados da superfície limpa AlN(0001) e as reconstruções mais energeticamente favoráveis.pt-BR
dc.formatapplication/pdf
dc.formattext/xml
dc.languagespa
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relationhttp://revistas.unimilitar.edu.co/index.php/rfcb/article/view/3466/3605
dc.relationhttp://revistas.unimilitar.edu.co/index.php/rfcb/article/view/3466/3641
dc.relation/*ref*/• Ambacher O. 1998. Growth and applications of Group III-nitrides. Journal of Physics D. 31:2653. https://doi.org/10.1088/0022-3727/31/20/001
dc.relation/*ref*/• Averbek R and Riechert H. 1999. Quantitative Model for the MBE-Growth of Ternary Nitrides. Physic Status Solidi A. 176:301. DOI: 10.1002/(SICI)1521-396X(199911)176:1<301::AID-PSSA301>3.0.CO;2-H
dc.relation/*ref*/• Bourret A, Adelmann C, Daudin B, Rouviere J, Feuillet G, and Mula G. 2001. Strain relaxation in (0001) AlN/GaN heterostructures. PHYSICAL REVIEW B. 63:245307. https://doi.org/10.1103/PhysRevB.63.245307
dc.relation/*ref*/• Chaudhuri J, Nyakiti L, Lee R, Gu Z, Edgar J, Wen J. (2007). 2007. Thermal oxidation of single crystalline aluminium nitride. Materials Characterization. Vol. 58, No. 8-9, pp. 672-679, ISSN 1044-5803. https://doi.org/10.1016/j.matchar.2006.11.013
dc.relation/*ref*/• Carvalho L. 2004. Estudo do comportamento de revestimentos a base de niobio aplicados por aspersão térmica a chama, na corrosão de aços ao carbono em presença de ácidos naftênicos e sulfetos em altas temperaturas. Tesis de doctorado, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil.
dc.relation/*ref*/• Feenstra R, Dong Y, Lee C, and Northrup J. 2005. Recent developments in surface studies of GaN and AlN. J. Vac. Sci. Technol. B. 23:1174. https://doi.org/10.1116/1.1881612
dc.relation/*ref*/• Gonzalez-Hernandez R, Lopez-Pérez W, Moreno-Armenta M y Rodriguez J. 2010. Vanadium adsorption and incorporation at the GaN(0001) surface: A first-principles study. Phys. Rev. B 81, 195407. https://doi.org/10.1103/PhysRevB.81.195407
dc.relation/*ref*/• Heying B, Averbeck R, Chen L, Haus E, Riechert H, and Speck J. 2000. Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 88:1855. doi: 10.1063/1.1305830
dc.relation/*ref*/• Hu C, Li J, Zhang Y, Hu X, Lu N, Chen Y. 2006. A DFT study of O2 adsorption on periodic GaN (0001) and (000-1) surfaces. Chem.Phys. Lett. 424, 273. 10.1016/j.cplett.2006.04.021
dc.relation/*ref*/• Hohenberg P and Kohn W. 1964. Inhomogeneous Electron Gas. Phys. Rev. B136, 864. https://doi.org/10.1103/PhysRev.136.B864
dc.relation/*ref*/• Kohn W and Sham L. 1965. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1163. https://doi.org/10.1103/PhysRev.140.A1133
dc.relation/*ref*/• Ke He1, L. Y. Ma1, X. C. Ma1, J. F. Jia1 and Q. K. Xue2. AÑO. Two-dimensional growth of Fe thin films with perpendicular magnetic anisotropy on GaN(0001). Applied Physics Letters 51.
dc.relation/*ref*/• imon V, Brand S, Clark S y Abram R. 2005. Titulo. J. Phys.: Condens. Matter 17 (2005) 17.
dc.relation/*ref*/• Jackson T, Virkar A, More K, Dinwiddie R, and Cutler R. 1997. High-Thermal-Conductivity Aluminum Nitride Ceramics: The Effect of Thermodynamic, Kinetic, and Microstructural Factors. Journal of the American Ceramic Society, 80, 1421-1435. https://doi.org/10.1111/j.1151-2916.1997.tb03000.x
dc.relation/*ref*/• Jindal V and Shahedipour-Sandvik F. 2009. Density functional theoretical study of surface structure and adatom kinetics for wurtzite AlN. J. Appl. Phys., 105:084902. 38, 48 48, 50 https://doi.org/10.1063/1.3106164
dc.relation/*ref*/• W. Kohn and L. Sham. 1965. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1163. https://doi.org/10.1103/PhysRev.140.A1133
dc.relation/*ref*/• Lee C, Dong Y and Feenstra R. 2003. Reconstrutions of the AlN(0001) surface . PHYSICAL REVIEW B, 68:205317. https://doi.org/10.1103/PhysRevB.68.205317
dc.relation/*ref*/• Laasonen K, Pasquarello A, Car R, Lee C y Vanderbilt D. 1993. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47, 10142. https://doi.org/10.1103/PhysRevB.47.10142
dc.relation/*ref*/• Northrup J, Di Felice R and Neugebauer J. 1997. Atomic structure and stability of AlN(0001) and (000̱1) surfaces. Phys. Rev. B, 55:13878. https://doi.org/10.1103/PhysRevB.55.13878
dc.relation/*ref*/• Marulanda J, García A. y Vitola J. 2009. Protección contra la corrosión por sales fundidas de un acero al carbono por rociado térmico. Dyna, Año 76, Nro 157, pp. 251-256. https://revistas.unal.edu.co/index.php/dyna/article/download/28205/35524
dc.relation/*ref*/• Monkhorst H y Pack J. 1976. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188.6. https://doi.org/10.1103/PhysRevB.13.5188
dc.relation/*ref*/• Onojima N, Suda J, Kimoto T and Matsunami H. 2003. Growth of high-quality non-polar AlN on 4H-SiC(11–20) substrate by molecular-beam epitaxy. Physic Status Solidi C. 0:2502. DOI: 10.1002/pssc.200303396
dc.relation/*ref*/• Onojima N, Suda J and Matsunami H. 2002. Molecular-beam epitaxial growth of insulating AlN on surface-controlled 6H–SiC substrate by HCl gas etching. Appl. Phys. Lett. 80:76. https://doi.org/10.1063/1.1428620
dc.relation/*ref*/• Ponce F and Bour D. 1997. Nitride-based semiconductors for blue and Green light-emitting divices. Nature (London), 386:351. doi:10.1038/386351a0
dc.relation/*ref*/• Prinz G, Ladenburger A, Feneberg M, Schirra M, Thapa S, Bickermann M, Epelbaum B, Scholz F, Thonke K, Sauer R. 2006. Photoluminescence, cathodoluminescence, and reflectance study of AlN layers and AlN single crystals. Superlattices & Microstructures, Vol. 40, No. 4-6, pp. 513-518, ISSN 0749-6036. https://doi.org/10.1016/j.spmi.2006.10.001
dc.relation/*ref*/• Perdew J, Burke K and Ernzerhof M. 1996. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 3. https://doi.org/10.1103/PhysRevLett.77.3865
dc.relation/*ref*/• Souza A. 2000. Colapso de dutos flexíveis sob pressão externa, Boletín técnico, Petrobras, Rio de Janeiro, Brasil.
dc.relation/*ref*/• Stampft C y Freeman A. 2003. Metallic to insulating nature of TaNx: Role of Ta and N vacancies . Phys. Rev. B 67 (2003) 64108.5 https://doi.org/10.1103/PhysRevB.67.064108
dc.relation/*ref*/• Tomanik E, Zabeu C. y Almeida G. 2003. Abnormal wear on piston top groove, Mahle metal leve s.a. Paper SAE 2003-01-1102. https://doi.org/10.4271/2003-01-1102.
dc.relation/*ref*/• Tung R and GrahamW. 1980. single atom self-diffusion on nickel surfaces. Surf. Sci, 97:73. https://doi.org/10.1016/0039-6028(80)90104-1
dc.relation/*ref*/• Takeuchi N, Selloni A, Myers T and Doolittle A. 2005. Adsorption and diffusion of Ga and N adatoms on GaN surfaces: Comparing the effects of Ga coverage and electronic excitation. Phys. Rev. B, 72:115307. https://doi.org/10.1103/PhysRevB.72.115307
dc.relation/*ref*/• Vurgarftman I, Meyer J, and Ram-Mohan L. 2001. Band parameters for iii-v compound semiconductor and their alloys. Journal of Applied Physics., 89(11):5815-5863. doi: 10.1063/1.1368156
dc.relation/*ref*/• Van de Leemput L and Van Kempen H. 1992. Scanning tunnelling microscopy. Rep. Prog. Phys. 55:1165. https://doi.org/10.1088/0034-4885/55/8/002
dc.relation/*ref*/• Vanderbilt D.1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892. https://doi.org/10.1103/PhysRevB.41.7892
dc.relation/*ref*/• Watari k, Hwang H, Toriyama M and Kanzaki S. 1996. Low‐Temperature Sintering and High Thermal Conductivity of YLiO2‐Doped AlN Ceramics. Journal of the American Ceramic Society. 79, 1979-1981. https://doi.org/10.1111/j.1151-2916.1996.tb08024.x
dc.relation/*ref*/• Wang F, Kruger P and Pollmann J. 2001. Electronic structure of 1×1 GaN(0001) and GaN(000-1)surfaces . Phys. Rev. B. 64, 035305. https://doi.org/10.1103/PhysRevB.64.035305
dc.relation/*ref*/• Zywietz T, Neugebauer J and Scheffler M. 1998. Adatom diffusion at GaN (0001) and (0001) surfaces. Appl. Phys. Lett, 73:487. https://doi.org/10.1063/1.121909
dc.rightsDerechos de autor 2020 Revista Facultad de Ciencias Básicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourceRevista Facultad de Ciencias Básicas; Vol. 15 No. 1 (2019); 21-30en-US
dc.sourceRevista Facultad de Ciencias Básicas; Vol. 15 Núm. 1 (2019); 21-30es-ES
dc.source2500-5316
dc.source1900-4699
dc.subjectAdsorptionen-US
dc.subjectDiffusionen-US
dc.subjectDensity Functional Theoryen-US
dc.subjectSurface Stabilityen-US
dc.subjectAdsorptionen-US
dc.subjectDiffusionen-US
dc.subjectAdsorciónes-ES
dc.subjectDifusiónes-ES
dc.subjectDFTes-ES
dc.subjectEstabilidad superficiales-ES
dc.subjectAdsorciónes-ES
dc.subjectDifusiónes-ES
dc.subjectAdsorçãopt-BR
dc.subjectDifusãopt-BR
dc.subjectTeoria do funcional de densidadept-BR
dc.subjectEstabilidade de superfíciept-BR
dc.subjectAdsorçãopt-BR
dc.subjectDifusãopt-BR
dc.titleStructural and Electronic Stability for Adsorption of Nb on a Polar AlN Surfaceen-US
dc.titleEstabilidad estructural y electrónica para la adsorción de Nb sobre la superficie polar del AlNes-ES
dc.titleEstabilidade estrutural e eletrônica para adsorção de Nb sobre a superfície polar do AlNpt-BR
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record