Show simple item record

dc.creatorGuarnizo Franco, Anderson
dc.creatorRodríguez Herrera, Luis Fernando
dc.creatorPulido Villamil, Ximena Carolina
dc.descriptionThe growing demand for various consumer products due to the increasing world population directly impacts the environment. Recently, the study and development of new materials based on single atoms (SA) is the new paradigm for green chemistry to deal with the negative effect of raw material overexploitation. This paper explains key concepts to understand SA-based materials, their synthesis, applications, the main analytical techniques for their characterization, and their relationship with environmental chemistry as a crucial technological element for sustainable development.en-US
dc.descriptionLa creciente demanda de diversos productos de consumo debido al aumento de la población mundial impacta directamente el ambiente. En años recientes, el estudio y desarrollo de nuevos materiales basados en átomos individuales (SA) constituyen un nuevo paradigma de la eficiencia en la química verde para enfrentar los impactos negativos de la sobreexplotación de las materias primas. En este documento se explica los conceptos claves para entender los materiales basados en SA, su síntesis, aplicaciones, así como las principales técnicas analíticas para su caracterización y su relación con la química ambiental como elemento tecnológico clave en el desarrollo
dc.descriptionA crescente demanda de diversos produtos de consumo devido ao aumento da população mundial impacta diretamente o ambiente. Em anos recentes, o estudo e desenvolvimento de novos materiais baseados em átomos individuais (SA) constituem um novo paradigma da eficiência na química verde para enfrentar os impactos negativos da superexploração das matérias-primas. Neste documento, explica-se os conceitos chave para entender os materiais baseados em SA, sua síntese, aplicações, bem como as principais técnicas analíticas para sua caracterização e sua relação com a química ambiental como elemento tecnológico chave no desenvolvimento sustentá
dc.publisherUniversidad Militar Nueva Granadaes-ES
dc.relation/*ref*/Alghannam, A., Muhich, C. L., & Musgrave, C. B. (2017). Adatom surface diffusion of catalytic metals on the anatase TiO 2 (101) surface. Physical Chemistry Chemi- cal Physics, 19(6), 4541-4552.
dc.relation/*ref*/Andraos, J. (2012). Inclusion of environmental impact pa- rameters in radial pentagon material efficiency metrics analysis: Using benign indices as a step towards a com- plete assessment of "greenness" for chemical reactions and synthesis plans. Organic Process Research & De- velopment, 16(9), 1482-1506.
dc.relation/*ref*/Bond, G. C. (1974). Homogeneous and Heterogeneous Catalysis by Noble Metals, in B. J. Luberoff (Ed.), Ho- mogeneous Catalysis (pp. 25-34). American Chemical Society.
dc.relation/*ref*/Caparrós, F. J., Guarnizo, A., Rossell, M. D., Angurell, I., Seco, M., Muller, G., ... & Rossell, O. (2017). NH 2-or PPh 2-functionalized linkers for the immobilization of palla- dium on magnetite nanoparticles? rsc advances, 7(45), 27872-27880.
dc.relation/*ref*/Castillejos, E., García-Minguillán, A. M., Bachiller-Bae- za, B., Rodríguez-Ramos, I., & Guerrero-Ruiz, A. (2018). When the nature of surface functionalities on modified carbon dominates the dispersion of palla- dium hydrogenation catalysts. Catalysis Today, 301, 248-257.
dc.relation/*ref*/Chang, T. Y., Tanaka, Y., Ishikawa, R., Toyoura, K., Mat- sunaga, K., Ikuhara, Y., & Shibata, N. (2014). Direct imaging of pt single atoms adsorbed on TiO2 (110) surfaces. Nano letters, 14(1), 134-138.
dc.relation/*ref*/Chen, Y., Huang, Z., Gu, X., Ma, Z., Chen, J., & Tang, X. (2017). Top-down synthesis strategies: Maximum noble-metal atom efficiency in catalytic materials. Chi- nese Journal of Catalysis, 38(9), 1588-1596.
dc.relation/*ref*/Cheng, N., Zhang, L., Doyle-Davis, K., & Sun, X. (2019). Single-atom catalysts: From design to applica- tion. Electrochemical Energy Reviews, 2(4), 1-35.
dc.relation/*ref*/Corma, A., & Garcia, H. (2008). Supported gold nanoparti- cles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096-2126.
dc.relation/*ref*/Corma, A., Concepción, P., Boronat, M., Sabater, M. J., Navas, J., Yacaman, M. J., ... & Mendoza, E. (2013). Exceptional oxidation activity with size-controlled su- pported gold clusters of low atomicity. Nature Chemis- try, 5(9), 775-781.
dc.relation/*ref*/Cui, X., Junge, K., Dai, X., Kreyenschulte, C., Pohl, M. M., Wohlrab, S., ... & Beller, M. (2017). Synthesis of single atom based heterogeneous platinum catalysts: High selectivity and activity for hydrosilylation reactions. acs central science, 3(6), 580-585.
dc.relation/*ref*/Deng, T., Zheng, W., & Zhang, W. (2017). Increasing the range of non-noble-metal single-atom catalysts. Chinese Journal of Catalysis, 38(9), 1489-1497.
dc.relation/*ref*/Dicks, A. P., & Hent, A. (2015). Atom economy and reac- tion mass efficiency. In Green Chemistry Metrics (pp. 17-44). Springer, Cham.
dc.relation/*ref*/Dong, F., Zhao, Y., Han, W., Zhao, H., Lu, G., & Tang, Z. (2017). Co nanoparticles anchoring three dimen- sional graphene lattice as bifunctional catalyst for low-temperature CO oxidation. Molecular Catalysis, 439, 118-127.
dc.relation/*ref*/Doyle, A. M., Shaikhutdinov, S. K., Jackson, S. D., & Fre- und, H. J. (2003). Hydrogenation on metal surfaces: Why are nanoparticles more active than single crys- tals? Angewandte chemie international edition, 42(42), 5240-5243.
dc.relation/*ref*/Fei, H., Dong, J., Arellano-Jiménez, M. J., Ye, G., Kim, N. D., Samuel, E. L., ... & Yacaman, M. J. (2015). Atomic cobalt on nitrogen-doped graphene for hydrogen ge- neration. Nature communications, 6(1), 1-8.
dc.relation/*ref*/Flytzani-Stephanopoulos, M. (2017). Supported metal ca- talysts at the single-atom limit-A viewpoint. Chine- se Journal of Catalysis, 38(9), 1432-1442.
dc.relation/*ref*/Fuechsle, M., Miwa, J. A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., ... & Simmons, M. Y. (2012). A single-atom transistor. Nature nanotechnology, 7(4), 242-246.
dc.relation/*ref*/Gao, Z., Yang, W., Ding, X., Lv, G., & Yan, W. (2018). Su- pport effects in single atom iron catalysts on adsorp- tion characteristics of toxic gases (NO2, NH3, SO3 and H2S). Applied Surface Science, 436, 585-595.
dc.relation/*ref*/González-Castaño, M., Le Saché, E., Ivanova, S., Ro- mero-Sarria, F., Centeno, M. A., & Odriozola, J. A. (2018). Tailoring structured wgs catalysts: Impact of multilayered concept on the water surface interac- tions. Applied Catalysis B: Environmental, 222, 124- 132.
dc.relation/*ref*/Greeley, J., Nørskov, J. K., & Mavrikakis, M. (2002). Electro- nic structure and catalysis on metal surfaces. Annual review of physical chemistry, 53(1), 319-348.
dc.relation/*ref*/Guarnizo, A., Angurell, I., Muller, G., Llorca, J., Seco, M., Rossell, O., & Rossell, M. D. (2016). Highly water-dispersible magnetite-supported Pd nanoparticles and single atoms as excellent catalysts for Suzuki and hydrogenation reactions. rsc advances, 6(73), 68675-68684.
dc.relation/*ref*/Guarnizo Franco, A. (2016). Síntesis y propiedades catalíti- cas de nanopartículas de paladio depositadas sobre na- nopartículas de magnetita. Universitat de Barcelona.
dc.relation/*ref*/Hahn, J. R., & Ho, W. (2001). Oxidation of a single carbon monoxide molecule manipulated and induced with a scanning tunneling microscope. Physical review let- ters, 87(16), 166102.
dc.relation/*ref*/Hansen, T. W., DeLaRiva, A. T., Challa, S. R., & Datye, A. K. (2013). Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Accounts of chemical research, 46(8), 1720-1730.
dc.relation/*ref*/Haruta, M. (2003). When gold is not noble: Catalysis by nanoparticles. The chemical record, 3(2), 75-87.
dc.relation/*ref*/Hedayatnasab, Z., Abnisa, F., & Daud, W. M. A. W. (2017). Review on magnetic nanoparticles for mag- netic nanofluid hyperthermia application. Materials & Design, 123, 174-196.
dc.relation/*ref*/Hu, P., Huang, Z., Amghouz, Z., Makkee, M., Xu, F., Kap- teijn, F., ... & Tang, X. (2014). Electronic metal-support interactions in single‐atom catalysts. Angewandte Chemie, 126(13), 3486-3489.
dc.relation/*ref*/Jonker, B. T. (1994). Surface adatom-adatom coordina- tion and orientation determined by low energy Auger electron and photoelectron diffraction due to adatom emission. Surface science, 306(1-2), L555-L562.
dc.relation/*ref*/Kharissova, O. V., Dias, H. R., Kharisov, B. I., Pérez, B. O., & Pérez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in biotechnology, 31(4), 240-248.
dc.relation/*ref*/Kim, J., Guillaume, B., Chung, J., & Hwang, Y. (2015). Critical and precious materials consumption and requirement in wind energy system in the EU 27. Applied Energy, 139, 327-334.
dc.relation/*ref*/Liang, S., Hao, C., & Shi, Y. (2015). The power of single-atom catalysis. ChemCatChem, 7(17), 2559- 2567.
dc.relation/*ref*/Liu, J., Bunes, B. R., Zang, L., & Wang, C. (2018). Suppor- ted single-atom catalysts: Synthesis, characterization, properties, and applications. Environmental Chemistry Letters, 16(2), 477-505.
dc.relation/*ref*/Liu, J., Jiao, M., Lu, L., Barkholtz, H. M., Li, Y., Wang, Y., ... & Ma, C. (2017). High performance platinum single atom electrocatalyst for oxygen reduction reac- tion. Nature communications, 8(1), 1-10.
dc.relation/*ref*/Liu, L., & Corma, A. (2018). Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chemical reviews, 118(10), 4981-5079.
dc.relation/*ref*/Liu, P., Xie, Y., Miller, E., Ebine, Y., Kumaravadivel, P., Sohn, S., & Cha, J. J. (2019). Dislocation-driven SnTe surface defects during chemical vapor depo- sition growth. Journal of Physics and Chemistry of Solids, 128, 351-359.
dc.relation/*ref*/MacLaren, J. M., Pendry, J. P., & Joyner, R. W. (1986). The role of adatom geometry in the strength and range of catalyst poisoning. Surface science, 165(2-3), L80-L84.
dc.relation/*ref*/Märkl, J. T. (2015). Investigation of Magnetic Adatoms with Scanning Tunneling Techniques. Karlsruhe: kit Scientific Publishing.
dc.relation/*ref*/Matrane, I., Mazroui, M. H., Sbiaai, K., Eddiai, A., & Bou- ghaleb, Y. (2017). Energy barriers of single-adatoms diffusion on unreconstructed and reconstructed (110) surfaces. The European Physical Journal B, 90(10), 201.
dc.relation/*ref*/Nath, S., Jana, S., Pradhan, M., & Pal, T. (2010). Ligand-stabilized metal nanoparticles in organic sol- vent. Journal of colloid and interface science, 341(2), 333-352.
dc.relation/*ref*/Natterer, F. D., Yang, K., Paul, W., Willke, P., Choi, T., Greber, T., ... & Lutz, C. P. (2017). Reading and writing single-atom magnets. Nature, 543(7644), 226-228.
dc.relation/*ref*/Nørskov, J. K. (2001). Surface chemistry: Catalysis frozen in time. Nature, 414(6862), 405-406.
dc.relation/*ref*/Ogino, I. (2017). X-ray absorption spectroscopy for single-atom catalysts: Critical importance and persistent challenges. Chinese Journal of Catalysis, 38(9), 1481- 1488.
dc.relation/*ref*/O'Mullane, A. P. (2014). From single crystal surfaces to single atoms: Investigating active sites in electro- catalysis. Nanoscale, 6(8), 4012-4026.
dc.relation/*ref*/Pajonk, G. M. (2000). Contribution of spillover effects to heterogeneous catalysis. Applied Catalysis A: General, 202(2), 157-169.
dc.relation/*ref*/Parkinson, G. S. (2017). Unravelling single atom catalysis: The surface science approach. arXiv preprint arXiv:1706.09473.
dc.relation/*ref*/Parkinson, G. S., Novotny, Z., Argentero, G., Schmid, M., Pavelec, J., Kosak, R., ... & Diebold, U. (2013). Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nature materials, 12(8), 724-728.
dc.relation/*ref*/Pfisterer, J. H., Liang, Y., Schneider, O., & Bandarenka, A. S. (2017). Direct instrumental identification of ca- talytically active surface sites. Nature, 549(7670), 74- 77.
dc.relation/*ref*/Pla, J. J., Tan, K. Y., Dehollain, J. P., Lim, W. H., Morton, J. J., Jamieson, D. N., ... & Morello, A. (2012). A single-atom electron spin qubit in silicon. Nature, 489(7417), 541- 545
dc.relation/*ref*/Pyle, D. S., Gray, E. M., & Webb, C. J. (2016). Hydrogen
dc.relation/*ref*/storage in carbon nanostructures via spillover. Inter- national Journal of Hydrogen Energy, 41(42), 19098- 19113.
dc.relation/*ref*/Qiao, B., Liang, J. X., Wang, A., Xu, C. Q., Li, J., Zhang, T., & Liu, J. J. (2015). Ultrastable single-atom gold ca- talysts with strong covalent metal-support interaction (CMSI). Nano Research, 8(9), 2913-2924.
dc.relation/*ref*/Qiao, B., Wang, A., Yang, X., Allard, L. F., Jiang, Z., Cui, Y., ... & Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature chemistry, 3(8), 634- 641.
dc.relation/*ref*/Risse, T., Shaikhutdinov, S., Nilius, N., Sterrer, M., & Freund, H. J. (2008). Gold supported on thin oxide films: From single atoms to nanoparticles. Accounts of chemical research, 41(8), 949-956.
dc.relation/*ref*/Rossell, M. D., Caparrós, F. J., Angurell, I., Muller, G., Llorca, J., Seco, M., & Rossell, O. (2016). Magnetite-supported palladium single-atoms do not catalyse the hydrogenation of alkenes but small clusters do. Catalysis Science & Technology, 6(12), 4081-4085.
dc.relation/*ref*/Santos, C. S., Gabriel, B., Blanchy, M., Menes, O., Gar- cía, D., Blanco, M., ... & Neto, V. (2015). Industrial applications of nanoparticles-A prospective over- view. Materials Today: Proceedings, 2(1), 456-465.
dc.relation/*ref*/Schuh, T., Balashov, T., Miyamachi, T., Wu, S. Y., Kuo, C. C., Ernst, A., ... & Wulfhekel, W. (2011). Magne- tic anisotropy and magnetic excitations in supported atoms. Physical Review B, 84(10), 104401.
dc.relation/*ref*/Sengani, M., Grumezescu, A. M., & Rajeswari, V. D. (2017). Recent trends and methodologies in gold na- noparticle synthesis-A prospective review on drug delivery aspect. OpenNano, 2, 37-46.
dc.relation/*ref*/Sun, J., Han, Y., Fu, H., Qu, X., Xu, Z., & Zheng, S. (2017). Au@ Pd/TiO2 with atomically dispersed Pd as highly active catalyst for solvent-free aerobic oxidation of benzyl alcohol. Chemical Engineering Journal, 313, 1-9.
dc.relation/*ref*/Sun, S., Zhang, G., Gauquelin, N., Chen, N., Zhou, J., Yang, S., ... & Li, R. (2013). Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Scientific reports, 3(1), 1-9. https://doi. org/10.1038/srep01775
dc.relation/*ref*/Vilé, G., Albani, D., Nachtegaal, M., Chen, Z., Dontsova, D., Antonietti, M., ... & Pérez Ramírez, J. (2015). A stable single site palladium catalyst for hydrogenations. An- gewandte Chemie International Edition, 54(38), 11265- 11269.
dc.relation/*ref*/Wang, L., Huang, L., Liang, F., Liu, S., Wang, Y., & Zhang, H. (2017). Preparation, characterization and catalytic performance of single-atom catalysts. Chine- se Journal of Catalysis, 38(9), 1528-1539.
dc.relation/*ref*/Wei, H., Liu, X., Wang, A., Zhang, L., Qiao, B., Yang, X., ... & Zhang, T. (2014). FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature communications, 5, 5634.
dc.relation/*ref*/Woodruff, D. P. (1994). Photoelectron and Auger electron diffraction. Surface science, 299, 183-198.
dc.relation/*ref*/Wu, C. X., Wen, S. Z., Yan, L. K., Zhang, M., Ma, T. Y., Kan, Y. H., & Su, Z. M. (2017). Conductive metal adatoms adsorbed on graphene nanoribbons: A first-principles study of electronic structures, magnetization and trans- port properties. Journal of Materials Chemistry C, 5(16), 4053-4062.
dc.relation/*ref*/Yan, H., Cheng, H., Yi, H., Lin, Y., Yao, T., Wang, C., ... & Lu, J. (2015). Single-atom Pd1/graphene catalyst achie- ved by atomic layer deposition: Remarkable performan- ce in selective hydrogenation of 1,3-butadiene. Journal of the American chemical society, 137(33), 10484-10487.
dc.relation/*ref*/Yang, X. F., Wang, A., Qiao, B., Li, J., Liu, J., & Zhang, T. (2013). Single-atom catalysts: A new frontier in hetero- geneous catalysis. Accounts of chemical research, 46(8), 1740-1748.
dc.relation/*ref*/Yazdani, A., Jones, B. A., Lutz, C. P., Crommie, M. F., & Eigler, D. M. (1997). Probing the local effects of magnetic impurities on superconductivity. Science, 275(5307), 1767-1770.
dc.relation/*ref*/Zhang, L., Ren, Y., Liu, W., Wang, A., & Zhang, T. (2018). Single-atom catalyst: A rising star for green synthe- sis of fine chemicals. National Science Review, 5(5), 653-672.
dc.rightsDerechos de autor 2020 Revista Facultad de Ciencias Básicases-ES
dc.sourceRevista Facultad de Ciencias Básicas; Vol. 15 No. 2 (2019); 69-81en-US
dc.sourceRevista Facultad de Ciencias Básicas; Vol. 15 Núm. 2 (2019); 69-81es-ES
dc.subjectGreen chemistryen-US
dc.subjectSustainable developmenten-US
dc.subjectSingle atomen-US
dc.subjectGreen chemistryen-US
dc.subjectQuímica verdees-ES
dc.subjectDesarrollo sosteniblees-ES
dc.subjectEconomía del átomoes-ES
dc.subjectÁtomo individuales-ES
dc.subjectQuímica verdees-ES
dc.subjectQuímica verdept-BR
dc.subjectDesenvolvimento sustentávelpt-BR
dc.subjectEconomia do átomopt-BR
dc.subjectÁtomo individualpt-BR
dc.subjectQuímica verdept-BR
dc.titleSingle Atoms: A Challenge for Green Chemistryen-US
dc.titleÁtomos individuales: Un reto para la química verdees-ES
dc.titleÁtomos individuais: Um desafio para a química verdept-BR

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record