dc.contributor.advisor | Briceño Zuluaga, Francisco Javier | |
dc.contributor.author | Rodríguez Burgos, Aura María | |
dc.coverage.spatial | Corredor Marino del Pacífico Este Tropical | spa |
dc.date.accessioned | 2021-08-26T16:50:48Z | |
dc.date.available | 2021-08-26T16:50:48Z | |
dc.date.issued | 2020-04-05 | |
dc.identifier.uri | http://hdl.handle.net/10654/38481 | |
dc.description.abstract | La variabilidad y cambio climático por influencia antrópica ha traído consigo alteraciones en ecosistemas marinos que a su vez han afectado la fisiología y metabolismo de especies de ectotermos como el tiburón martillo común (Sphyrna lewini). No obstante, se desconoce acerca del impacto que podrá tener la variabilidad climática sobre la distribución de esta especie, en especial en el Corredor Marino del Pacífico Este Tropical, considerada una zona que alberga gran biodiversidad marina. El objetivo de este proyecto fue evaluar el efecto variabilidad y cambio climático sobre la distribución oceanográfica del tiburón martillo (Sphyrna lewini) en el Corredor Marino del Pacífico Este Tropical, haciendo un contraste entre el escenario presente y el futuro para el 2050. Como metodología se realizó un modelo de nicho ecológico a partir del paquete KUENM del software R que usa el algoritmo de máxima entropía (MaxEnt). La modelación se hizo para el año 2050 bajo escenarios RCP2.6 y RCP8.5. Se realizaron un total de 952 modelos de los cuales solo uno cumplió con los parámetros estadísticos establecidos como óptimos. Hacia escenarios futuros, la idoneidad ambiental para S.lewini muestra que esta especie migraría hacia el sur en el Pacífico chileno, asociado a un posible calentamiento que tendrá la zona ecuatorial y al posible enfriamiento que tendrá la zona subtropical del Pacífico Sur para el 2050, producto de cambios en la dinámica oceanográfica. | spa |
dc.description.sponsorship | Migramar | spa |
dc.description.sponsorship | Fundación Alejandro Ángel Escobar | spa |
dc.description.tableofcontents | AGRADECIMIENTOS 4
1. CAPÍTULO I: ARTÍCULO DE REVISIÓN 5
1.1. INTRODUCCIÓN 5
1.2. METODOLOGÍA 6
1.3. Océano Pacífico Oriental y su interacción con las especies marinas 6
1.3.1. Ecología de Sphyrna lewini y su interacción con el Océano Pacífico 7
1.3.2. Preferencia alimenticia de Sphyrna lewini 7
1.3.3. Preferencia de hábitat de Sphyrna lewini 8
1.4. Dinámica oceanográfica regional en el Pacífico Sur 11
1.5. Dinámica atmosférica regional del Pacífico sur 14
1.6. Dinámica de las migraciones del tiburón martillo durante ENSO en el CMAR 15
1.6.1. Migraciones de Sphyrna lewini en el CMAR 17
1.6.2. Migraciones de Sphyrna lewini y zonas de pesca 19
1.6.3. Reproducción de Sphyrna lewini y su relación con ENSO en el CMAR 19
1.7. Variabilidad climática y biodiversidad del Pacífico sur 20
1.8. CONCLUSIONES 21
1.9. BIBLIOGRAFÍA 22
1.10 ANEXOS 29
2. CAPÍTULO II: ARTÍCULO DE INVESTIGACIÓN 32
2.1 RESUMEN 32
3. INTRODUCCIÓN 32
4. METODOLOGÍA 35
4.1 Área de estudio 35
4.2 Obtención de registros y predictores climáticos 35
4.3 Modelado de nicho ecológico 36
4.4 Tratamiento de ocurrencias 37
4.5 Tratamiento de información ambiental 37
4.6 Calibración del modelo 38
4.7 Evaluación y selección del modelo final 38
4.8 Análisis de extrapolación 39
5. RESULTADOS 39
6. DISCUSIÓN 41
6.1 Curvas de respuesta 41
6.2 Mapas de idoneidad ambiental 44
7. RECOMENDACIONES 45
8. CONCLUSIONES 46
9. BIBLIOGRAFÍA 47
10. ANEXOS 53 | spa |
dc.format.mimetype | applicaction/pdf | spa |
dc.language.iso | spa | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Impacto de la variabilidad y cambio climático en la distribución de Sphyrna lewini en el Corredor Marino del Pacífico Este Tropical | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | * |
dc.subject.lemb | CAMBIOS CLIMATICOS | spa |
dc.subject.lemb | TIBURONES | spa |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
dc.description.abstractenglish | Climate variability and change due to anthropic influence has brought alterations in marine ecosystems, besides, have affected the physiology and metabolism of ectotherm species such as the common hammerhead shark (Sphyrna lewini). Moreover, it is unknown about climate variability impact may have on the distribution of this species, especially in the Eastern Tropical Pacific Marine Corridor. It is considered an area that harbors great marine biodiversity. The objective of this project was to evaluate the effect of climate variability and climate change on the oceanographic distribution of the hammerhead shark (Sphyrna lewini) in the Eastern Tropical Pacific Marine Corridor. We made a contrast between two scenarios: present and future (2050). As a methodology, we made an ecological niche model from the KUENM package of R software that uses the maximum entropy algorithm (MaxEnt). The modeling was done for the year 2050 under scenarios RCP2.6 and RCP8.5. A total of 952 models were made, of which only one had the statistical parameters established as optimal. Towards future scenarios, the environmental suitability for S.lewini shows that this species would migrate to the south in the Chilean Pacific. In fact, it is associated with a possible warming that the equatorial zone will have and the possible cooling that the subtropical zone of the South Pacific will have by 2050, product of changes in oceanographic dynamics. | spa |
dc.title.translated | Impact of climate variability and climare change on the distribution of Sphyrna lewini in the Eastern Tropical Pacific Marine Corridor | spa |
dc.subject.keywords | KUENM | spa |
dc.subject.keywords | Ecological niche modeling | spa |
dc.subject.keywords | Upwellings | spa |
dc.subject.keywords | Bio-ORACLE | spa |
dc.subject.keywords | Hammerhead Shark | spa |
dc.subject.keywords | Climate change | spa |
dc.publisher.program | Biología Aplicada | spa |
dc.creator.degreename | Biólogo | spa |
dc.description.degreelevel | Pregrado | spa |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.rights.creativecommons | Attribution-NonCommercial-NoDerivatives 4.0 International | spa |
dc.relation.references | 1. Ancapichún, S., & Garcés-Vargas, J. (2015). Variabilidad del Anticiclón Subtropical del Pacífico Sudeste y su impacto sobre la temperatura superficial del mar frente a la costa centro-norte de Chile. Ciencias marinas, 41(1), 1-20. | spa |
dc.relation.references | 2. Aguilar Castro, N. A. (2003). Ecología trófica de juveniles del tiburón martillo Sphyrna lewini (Griffith & Smith, 1834) en el Golfo de California (Doctoral dissertation, Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas). | spa |
dc.relation.references | 3. Acevedo, J. A. A., & Hernández, G. M. V. (2013). Fenología de ambientes tropicales en el marco de la teledetección. GeoFocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, (13_2), 195-211. | spa |
dc.relation.references | 4. Balasubramanian, A. (2014). Oceanography: The Pacific Ocean. University of Mysore, Mysore, India. | spa |
dc.relation.references | 5. Baum, J. K., & Worm, B. (2009). Cascading top‐down effects of changing oceanic predator abundances. Journal of animal ecology, 78(4), 699-714. | spa |
dc.relation.references | 6. Bessudo, S., Soler, G. A., Klimley, A. P., Ketchum, J. T., Hearn, A., & Arauz, R. (2011a). Residency of the scalloped hammerhead shark (Sphyrna lewini) at Malpelo Island and evidence of migration to other islands in the Eastern Tropical Pacific. Environmental Biology of Fishes, 91(2), 165-176. | spa |
dc.relation.references | 7. Bessudo, S., Soler, G. A., Klimley, P. A., Ketchum, J., Arauz, R., Hearn, A., ... & Calmettes, B. (2011b). Vertical and horizontal movements of the scalloped hammerhead shark (Sphyrna lewini) around Malpelo and Cocos Islands (Tropical Eastern Pacific) using satellite telemetry. Boletín de Investigaciones Marinas y Costeras-INVEMAR, 40, 91-106. | spa |
dc.relation.references | 8. Bezerra, N. P. A., Macena, B. C. L., Travassos, P., Afonso, P., & Hazin, F. H. V. (2019). Evidence of site fidelity and deep diving behaviour of scalloped hammerhead shark (Sphyrna lewini) around the Saint Peter and Saint Paul Archipelago, in the equatorial Mid-Atlantic ridge. Marine and Freshwater Research. | spa |
dc.relation.references | 9. Braxmeier, H. (2010). Corrientes marinas de Galápagos. [Figura]. Recuperado de https://ecuadorgalapagosinfo.com/islas-galapagos/corrientes-marinas/ | spa |
dc.relation.references | 10. Bressan, A., & Constantin, A. (2019). The deflection angle of surface ocean currents from the wind direction. Journal of Geophysical Research: Oceans, 124(11), 7412-7420. | spa |
dc.relation.references | 11. Briceño-Zuluaga, F. J., Sifeddine, A., Caquineau, S., Cardich, J., Salvatteci, R., Gutierrez, D., ... & Machado, C. (2016). Terrigenous material supply to the Peruvian central continental shelf (Pisco, 14° S) during the last 1000 years: paleoclimatic implications. Climate of the Past, 12(3), 787-798. | spa |
dc.relation.references | 12. Camino, E. R. (2018). Anomalía de temperatura de la superficie del mar (SST). Revista Tiempo y Clima, 5(59). | spa |
dc.relation.references | 13. Chan, F., Barth, J. A., Lubchenco, J., Kirincich, A., Weeks, H., Peterson, W. T., & Menge, B. A. (2008). Emergence of anoxia in the California current large marine ecosystem. Science, 319(5865), 920-920. | spa |
dc.relation.references | 14. Chávez, E. J., Arauz, R., Hearn, A., Nalesso, E., & Steiner, T. (2020). Asociación de tiburones con el Monte Submarino Las Gemelas y primera evidencia de conectividad con la Isla del Coco, Pacífico de Costa Rica. Revista de Biología Tropical, 68(S1), S320-S329. | spa |
dc.relation.references | 15. Chavez, F. P., Bertrand, A., Guevara-Carrasco, R., Soler, P., & Csirke, J. (2008). The northern Humboldt Current System: Brief history, present status and a view towards the future. Progress in Oceanography, 79(2–4), 95–105 | spa |
dc.relation.references | 16. Chavez, F. P., Ryan, J., Lluch-Cota, S. E., & Ñiquen, M. (2003). From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science, 299(5604), 217-221. | spa |
dc.relation.references | 17. Clarke, S., Coelho, R., Francis, M., Kai, M., Kohin, S., Liu, K. M., ... & Smart, J. (2015). Report of the pacific shark life history expert panel workshop, 28-30 april 2015. Western Central Pacific Fisheries Commission Scientific Committee eleventh regular session. Recuperado de https://www.wcpfc.int/system/files/EB-IP-13%20Workshop% 20Shark%20Life%20History%20Expert%20Panel%202.pdf | spa |
dc.relation.references | 18. Coetzee, H. J., Naidoo, K., & Wagenaar, I. (2020). A first observation of spermatogenesis in mature male scalloped hammerheads (Sphyrna lewini) from Zinkwazi, KwaZulu-Natal, South Africa. Fish Physiology and Biochemistry, 1-11. | spa |
dc.relation.references | 19. Coiraton, C., & Amezcua, F. (2020). In utero elemental tags in vertebrae of the scalloped hammerhead shark Sphyrna lewini reveal migration patterns of pregnant females. Scientific reports, 10(1), 1-13. | spa |
dc.relation.references | 20. Coiraton, C., Tovar‐Ávila, J., Garcés‐García, K. C., Rodríguez‐Madrigal, J. A., Gallegos‐Camacho, R., Chávez‐Arrenquín, D. A., & Amezcua, F. (2019). Periodicity of the growth‐band formation in vertebrae of juvenile scalloped hammerhead shark Sphyrna lewini from the Mexican Pacific Ocean. Journal of fish biology, 95(4), 1072-1085 | spa |
dc.relation.references | 21. Daza Suárez, A. (2017). Propuesta de regionalización del Pacífico Colombiano a partir de imágenes de color del océano (Bachelor's thesis, Universidad de Bogotá Jorge Tadeo Lozano). | spa |
dc.relation.references | 22. Dembicki, H. (2016). Practical petroleum geochemistry for exploration and production. Elsevier. | spa |
dc.relation.references | 23. Devis‐Morales, A., Schneider, W., Montoya‐Sánchez, R. A., & Rodríguez‐Rubio, E. (2008). Monsoon‐like winds reverse oceanic circulation in the Panama Bight. Geophysical Research Letters, 35(20). | spa |
dc.relation.references | 24. Drew, M., White, W. T., Dharmadi, Harry, A. V. and Huveneers, C. 2015. Age, growth and maturity of the pelagic thresher Alopias pelagicus and the scalloped hammerhead Sphyrna lewini. Journal of Fish Biology, 86(1): 333-354 | spa |
dc.relation.references | 25. Duffy, L. M., Olson, R. J., Lennert-Cody, C. E., Galván-Magaña, F., Bocanegra-Castillo, N., & Kuhnert, P. M. (2015). Foraging ecology of silky sharks, Carcharhinus falciformis, captured by the tuna purse-seine fishery in the eastern Pacific Ocean. Marine Biology, 162(3), 571-593. | spa |
dc.relation.references | 26. Estupiñán-Montaño, C., Cedeño-Figueroa, L. G., & Galván-Magaña, F. (2009). Hábitos alimentarios del tiburón martillo Sphyrna lewini (Griffith & Smith, 1834) (Chondrichthyes) en el Pacífico ecuatoriano. Revista de biología marina y oceanografía, 44(2), 379-386. | spa |
dc.relation.references | 27. Estupiñán-Montaño, C., Galvan-Magana, F., Tamburín, E., Sanchez-Gonzalez, A., Villalobos-Ramírez, D. J., Murillo-Bohórquez, N., ... & Estupiñán-Ortiz, J. F. (2017). Trophic inference in two sympatric sharks, Sphyrna lewini and Carcharhinus falciformis (elasmobranchii: carcharhiniformes), based on stable isotope analysis at Malpelo Island, Colombia. Acta Ichthyologica et Piscatoria, 47(4), 357-364. | spa |
dc.relation.references | 28. Evans, K., Bax, N., Bernal, P., Corrales, M. B., Cryer, M., Forsterra, G., ... & Rice, J. (2016). D. South Pacific Ocean. Recuperado de https://www.un.org/depts/los/global_reporting/WOA_RPROC/Chapter_36D.pdf%20consultado%2025.03.2020 | spa |
dc.relation.references | 29. Fernández-Álamo, M. A., & Färber-Lorda, J. (2006). Zooplankton and the oceanography of the eastern tropical Pacific: a review. Progress in Oceanography, 69(2-4), 318-359. | spa |
dc.relation.references | 30. Field, I. C., Meekan, M. G., Buckworth, R. C., & Bradshaw, C. J. (2009). Susceptibility of sharks, rays and chimaeras to global extinction. Advances in marine biology, 56, 275-363. | spa |
dc.relation.references | 31. Flores Aqueveque, V., Rojas, M., Aguirre, C., Arias, P. A., & González, C. (2020). South Pacific Subtropical High from the late Holocene to the end of the 21st century: insights from climate proxies and general circulation models. Clim Past 16(1):79–99 | spa |
dc.relation.references | 32. Friedlander, A. M., Zgliczynski, B. J., Ballesteros, E., Aburto-Oropeza, O., Bolaños, A., & Sala, E. (2012). The shallow-water fish assemblage of Isla del Coco National Park, Costa Rica: structure and patterns in an isolated, predator-dominated ecosystem. Revista de Biología Tropical, 60, 321-338. | spa |
dc.relation.references | 33. Gallagher, A. J., & Klimley, A. P. (2018). The biology and conservation status of the large hammerhead shark complex: the great, scalloped, and smooth hammerheads. Reviews in Fish Biology and Fisheries, 28(4), 777-794 | spa |
dc.relation.references | 34. Hays, G. C. (2017). Ocean currents and marine life. Current Biology, 27(11), 470-473. | spa |
dc.relation.references | 35. Hearn A., Klimley, P., & Peñaherrera, C. (2010a). Hotspots within hotspots? Hammerhead shark movements around Wolf Island. Galapagos Marine Reserve. Marine Biology, 157, 1899-1915 | spa |
dc.relation.references | 36. Hearn, A., Ketchum, J., Klimley, A. P., Espinoza, E., & Penaherrera, C. (2010b). Hotspots within hotspots? hammerhead shark movements around wolf island, galapagos marine reserve. Marine Biology, 157(9), 1899-1915. | spa |
dc.relation.references | 37. Hernández Rodríguez, M. A. (2017). Movimientos de sub-adultos de tiburón martillo, Sphyrna lewini, en las Islas Galápagos. Tesis de pregrado. Universidad San Francisco de Quito, Ecuador. | spa |
dc.relation.references | 38. Heupel, M. R., Carlson, J. K., & Simpfendorfer, C. A. (2007). Shark nursery areas: concepts, definition, characterization, and assumptions. Marine Ecology Progress Series, 337, 287-297. | spa |
dc.relation.references | 39. Hobday, A. J., Oliver, E. C., Gupta, A. S., Benthuysen, J. A., Burrows, M. T., Donat, M. G., ... & Smale, D. A. (2018). Categorizing and naming marine heatwaves. Oceanography, 31(2), 162-173. | spa |
dc.relation.references | 40. Hoffmayer, E. R., Franks, J. S., Driggers, W. B., & Howey, P. W. (2013). Diel vertical movements of a scalloped hammerhead, Sphyrna lewini, in the northern Gulf of Mexico. Bulletin of Marine Science, 89(2), 551–557. | spa |
dc.relation.references | 41. Hoyos-Padilla, E. M., Ketchum, J. T., Klimley, A. P., & Galván-Magaña, F. (2014). Ontogenetic migration of a female scalloped hammerhead shark Sphyrna lewini in the Gulf of California. Animal Biotelemetry, 2(1), 17. | spa |
dc.relation.references | 42. Huguet Alzina, A. (2017). Estudio experimental de la circulación general atmosférica y oceánica a escala de laboratorio (Tesis de Maestría). Universidad Politécnica de Valencia, España. | spa |
dc.relation.references | 43. Iglesias, I. (2010). Interacción océano-atmósfera: Influencia de la SST y de la circulación termohalina (Doctoral dissertation, Tesis doctoral. Universidad de Vigo). | spa |
dc.relation.references | 44. INVEMAR. (2010). Especies, ensamblajes y paisajes de los bloques marinos sujetos a exploración de hidrocarburos. Informe de actividades INVEMAR – ANH Fase III-Pacífico Caracterización de la megafauna y el pláncton del Pacífico colombiano, Santa Marta, 270p. | spa |
dc.relation.references | 45. Jerez-Guerrero, M., Criales-Hernández, M. I., & Giraldo, A. (2017). Copépodos epipelágicos en Bahía Cupica, Pacífico colombiano: composición de especies, distribución y variación temporal. Revista de Biología Tropical, 65(3), 1046-1061. | spa |
dc.relation.references | 46. Jorgensen, S. J., Klimley, A. P., & Muhlia‐Melo, A. F. (2009). Scalloped hammerhead shark Sphyrna lewini, utilizes deep‐water, hypoxic zone in the Gulf of California. Journal of Fish Biology, 74(7), 1682-1687. | spa |
dc.relation.references | 47. Kang, S. M., Held, I. M., & Xie, S. P. (2014). Contrasting the tropical responses to zonally asymmetric extratropical and tropical thermal forcing. Climate dynamics, 42(7-8), 2033-2043. | spa |
dc.relation.references | 48. Ketchum, J.T., Hearn, A., Klimley, A.P., Espinoza, E., Peñaherrera, C., Largier, J.L. (2014a). Seasonal changes inmovements and habitat preferences of the scalloped hammerhead shark (Sphyrna lewini) while refuging near an oceanic island. Marine Biology 161:755–767. | spa |
dc.relation.references | 49. Ketchum, J. T., Hearn, A., Klimley, A. P., Peñaherrera, C., Espinoza, E., Bessudo, S., ... & Arauz, R. (2014b). Inter-island movements of scalloped hammerhead sharks (Sphyrna lewini) and seasonal connectivity in a marine protected area of the eastern tropical Pacific. Marine Biology, 161(4), 939-951. | spa |
dc.relation.references | 50. Klimley, A. P., & Butler, S. B. (1988). Immigration and emigration of a pelagic fish assemblage to seamounts in the Gulf of California related to water mass movements using satellite imagery. Marine ecology progress series. Oldendorf, 49(1), 11-20. | spa |
dc.relation.references | 51. Lea, R., Rosenblatt, R. (2000). Observations on fishes associated with the 1997–98 El Niño off California. Reports of California Cooperative Oceanic Fisheries Investigations 41,117–129. | spa |
dc.relation.references | 52. Li, Y., Chen, Q., Liu, X., Li, J., Xing, N., Xie, F., ... & Wang, Z. (2019). Long‐term trend of the tropical Pacific trade winds under global warming and its causes. Journal of Geophysical Research: Oceans, 124(4), 2626-2640. | spa |
dc.relation.references | 53. Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A., & Lorda, J. (2019). Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Marine Biodiversity Records, 12(1), 13 | spa |
dc.relation.references | 54. López-Victoria, M., Cantera, J. R., Díaz, J. M., Rozo, D. M., Posada, B. O., & Osorno, A. (2004). Informe del Estado de los Ambientes y Recursos Marinos y Costeros en Colombia. Año 2003. Instituto de Investigaciones Marinas y Costeras INVEMAR, Santa Marta, Colombia. | spa |
dc.relation.references | 55. Maturana, J., Bello, M., & Manley, M. (1997). Antecedentes históricos y descripción del fenómeno El Niño, Oscilación del Sur. El Niño-La Niña, 2000, 13-27. | spa |
dc.relation.references | 56. Meyer, C. G., Holland, K. N., & Papastamatiou, Y. P. (2007). Seasonal and diel movements of giant trevally Caranx ignobilis at remote Hawaiian atolls: implications for the design of marine protected areas. Marine Ecology Progress Series, 333, 13-25. | spa |
dc.relation.references | 57. Montealegre, J. E. (2014). Actualización del Componente Meteorológico del Modelo Institucional del ideam sobre el Efecto Climático de los Fenómenos El Niño y La Niña en Colombia, como insumo para el Atlas Climatológico. Informe Final. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Bogotá, Colombia | spa |
dc.relation.references | 58. Naito, Y., Costa, D. P., Adachi, T., Robinson, P. W., Peterson, S. H., Mitani, Y., & Takahashi, A. (2017). Oxygen minimum zone: An important oceanographic habitat for deep‐diving northern elephant seals, Mirounga angustirostris. Ecology and evolution, 7(16), 6259-6270. | spa |
dc.relation.references | 59. Nalesso, E., Hearn, A., Sosa-Nishizaki, O., Steiner, T., Antoniou, A., Reid, A., ... & Ketchum, J. T. (2019). Movements of scalloped hammerhead sharks (Sphyrna lewini) at Cocos Island, Costa Rica and between oceanic islands in the Eastern Tropical Pacific. PloS one, 14(3). | spa |
dc.relation.references | 60. Navarro-Monterroza, E., Arias, P. A., & Vieira, S. C. (2019). El Niño-Oscilación del Sur, fase Modoki, y sus efectos en la variabilidad espacio-temporal de la precipitación en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 120-132. | spa |
dc.relation.references | 61. Noone, K. J., Sumaila, U. R., & Diaz, R. J. (2013). Managing ocean environments in a changing climate: sustainability and economic perspectives. Newnes. | spa |
dc.relation.references | 62. Papastamatiou, Y. P., Watanabe, Y. Y., Bradley, D., Dee, L. E., Weng, K., Lowe, C. G., & Caselle, J. E. (2015). Drivers of daily routines in an ectothermic marine predator: hunt warm, rest warmer?. PLoS One, 10(6). | spa |
dc.relation.references | 63. Paulmier, A., & Ruiz-Pino, D. (2009). Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography, 80(3-4), 113-128. | spa |
dc.relation.references | 64. Pérez-Jiménez, J. C. (2014). Historical records reveal potential extirpation of four hammerhead sharks (Sphyrna spp.) in Mexican Pacific waters. Reviews in fish biology and fisheries, 24(2), 671-683. | spa |
dc.relation.references | 65. Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., & Levin, S. A. (2013). Marine taxa track local climate velocities. Science, 341(6151), 1239-1242. | spa |
dc.relation.references | 66. Pistevos, J. C., Nagelkerken, I., Rossi, T., Olmos, M., & Connell, S. D. (2015). Ocean acidification and global warming impair shark hunting behaviour and growth. Scientific Reports, 5(1), 1-10. | spa |
dc.relation.references | 67. Poveda, G. (2004). La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 28(107), 201-222. | spa |
dc.relation.references | 68. Puentes, V. & Moncaleano, A. (Eds.). (2012). Sistema de Gestión Regional para el Uso Sostenible de los Recursos Pesqueros del Corredor Marino del Pacífico Este Tropical (CMAR). Resultados de Gestión en Colombia. Fundación Malpelo y otros Ecosistemas Marinos. 184 págs. | spa |
dc.relation.references | 69. Ramirez, J. (2006). Corrientes oceánicas. Sigma, 40, 20. | spa |
dc.relation.references | 70. Reyna Moreno, J. A., Devis Morales, A., Cantera Kintz, J. R., Ángel Cárdenas, E., Cabrales Vernaza, E., Lozano Iriarte, J. A., ... & Pardo Rojas, Z. (2013). El Océano Maravilla Terrestre. Comisión Colombiana del Océano. | spa |
dc.relation.references | 71. Rivas, M. L., Spínola, M., Arrieta, H., & Faife-Cabrera, M. (2018). Effect of extreme climatic events resulting in prolonged precipitation on the reproductive output of sea turtles. Animal Conservation, 21(5), 387–395 | spa |
dc.relation.references | 72. Roberts, C. M., O’Leary, B. C., McCauley, D. J., Cury, P. M., Duarte, C. M., Lubchenco, J., ... & Worm, B. (2017). Marine reserves can mitigate and promote adaptation to climate change. Proceedings of the National Academy of Sciences, 114(24), 6167-6175 | spa |
dc.relation.references | 73. Rodríguez-Ponga, R. (2014). El océano Pacífico. In El océano pacífico: conmemorando 500 años de su descubrimiento (pp. 143-146). Fundación Ramón Areces. | spa |
dc.relation.references | 74. Rodriguez-Rubio, E., & Stuardo, J. (2002). Variability of photosynthetic pigments in the Colombian Pacific Ocean and its relationship with the wind field using ADEOS-I data. Journal of Earth System Science, 111(3), 227-236. | spa |
dc.relation.references | 75. Romero, M. J. R., & Molina, J. J. C. (2001). La dinámica atmosférica en el flanco suroccidental de Europa: la Península Ibérica. Nimbus: Revista de climatología, meteorología y paisaje, (7), 5-20. | spa |
dc.relation.references | 76. Rosa, R., Baptista, M., Lopes, V. M., Pegado, M. R., Ricardo Paula, J., Trübenbach, K., ... & Repolho, T. (2014). Early-life exposure to climate change impairs tropical shark survival. Proceedings of the Royal Society B: Biological Sciences, 281(1793), 20141738. | spa |
dc.relation.references | 77. Salinas-de-León, P., Hoyos-Padilla, E. M., & Pochet, F. (2017). First observation on the mating behaviour of the endangered scalloped hammerhead shark Sphyrna lewini in the Tropical Eastern Pacific. Environmental Biology of Fishes, 100(12), 1603-1608. | spa |
dc.relation.references | 78. Scaife, A., Guilyardi, E., Cain, M., & Gilbert, A. (2019). What is the El Niño–Southern Oscillation? Weather, 74(7), 250–251. | spa |
dc.relation.references | 79. Schneider, T., Bischoff, T., & Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513(7516), 45-53. | spa |
dc.relation.references | 80. Schneider, W., Fuenzalida, R., & Garcés, J. (2004). Corrientes marinas y masas de agua. Biología Marina y Oceanografía: Conceptos y proceso. Ed. C. Werliger, 1. | spa |
dc.relation.references | 81. Schott, F. A., Mccreary, J. P., & Johnson, G. C. (2004). Shallow overturning circulations of the tropical-subtropical oceans. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr, 147, 261-304. | spa |
dc.relation.references | 82. Sherman, K. & Hempel, G. (2008). The UNEP large marine ecosystem report: a perspective on changing conditions in LMEs of the world’s Regional Seas. UNEP Regional Seas report and studies No. 182. United Nations Environment Programme, Nairobi. | spa |
dc.relation.references | 83. Smale, D. A., Wernberg, T., Oliver, E. C., Thomsen, M., Harvey, B. P., Straub, S. C., ... & Feng, M. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 9(4), 306-312. | spa |
dc.relation.references | 84. Soler, G. A., Bessudo, S., & Guzmán, A. (2013). Long term monitoring of pelagic fishes at Malpelo Island, Colombia. Latin American Journal of Conservation, 3(2). | spa |
dc.relation.references | 85. Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., ... & Körtzinger, A. (2012). Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature Climate Change, 2(1), 33-37. | spa |
dc.relation.references | 86. Sumaila, U. R., & Tai, T. C. (2020). End overfishing and increase the resilience of the ocean to climate change. Frontiers in Marine Science, 7, 523. | spa |
dc.relation.references | 87. Tewksbury, J. J., Huey, R. B., & Deutsch, C. A. (2008). Putting the heat on tropical animals. Science, 320(5881), 1296-1297. | spa |
dc.relation.references | 88. Villegas, N., Barrientos, J. C., & Málikov, I. (2012). Relación entre parámetros océano-atmosféricos y la producción del café verde en Colombia. Revista Colombiana de Ciencias Hortícolas, 6(1), 88-95. | spa |
dc.relation.references | 89. WMO. (2014). El Niño/ Southern Oscillation. Recuperado de https://library.wmo.int/doc_num.php?explnum_id=7888 consultado 23.02.2020) | spa |
dc.relation.references | 90. Wunsch, C. (2002). What is the thermohaline circulation? Science, 298(5596), 1179-1181. | spa |
dc.relation.references | 91. Zanella, I., & López-Garro, A. (2015). Abundancia, reproducción y tallas del tiburón martillo Sphyrna lewini (Carcharhiniformes: Sphyrnidae) en la pesca artesanal de Golfo Dulce, Pacífico de Costa Rica. Revista de Biología Tropical, 63, 307-317. | spa |
dc.relation.references | 92. Zanella, I., López-Garro, A., McComb-Kobza, D. M., Golfín-Duarte, G., Pérez-Montero, M., & Morales, J. (2016). First record of young-of-the-year Scalloped hammerhead shark, Sphyrna lewini (Carcharhiniformes: Sphyrnidae) from Isla del Coco National Park, Costa Rica. Revista de Biología Tropical, 201-204 | spa |
dc.relation.references | 1. Andrzejaczek, S., Gleiss, A. C., Jordan, L. K., Pattiaratchi, C. B., Howey, L. A., Brooks, E. J., & Meekan, M. G. (2018). Temperature and the vertical movements of oceanic whitetip sharks, Carcharhinus longimanus. Scientific reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-26485-3. | spa |
dc.relation.references | 2. Bakun, A., Black, B. A., Bograd, S. J., García-Reyes, M., Miller, A. J., Rykaczewski, R. R., & Sydeman, W. J. (2015). Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Current Climate Change Reports, 1(2), 85–93. https://doi.org/10.1007/s40641-015-0008-4 | spa |
dc.relation.references | 3. Bentlage, B., Peterson, A. T., Barve, N., & Cartwright, P. (2013). Plumbing the depths: extending ecological niche modelling and species distribution modelling in three dimensions. Global Ecology and Biogeography, 22(8), 952-961. https://doi.org/10.1111/geb.12049 | spa |
dc.relation.references | 4. Belmadani, A., Echevin, V., Codron, F., Takahashi, K., & Junquas, C. (2014). What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile?. Climate dynamics, 43(7-8), 1893-1914. https://doi.org/10.1007/s00382-013-2015-2 | spa |
dc.relation.references | 5. Bernal, D., Carlson, J. K., Goldman, K. J., & Lowe, C. G. (2012). Energetics, Metabolism, and Endothermy in Sharks and Rays. Biology of Sharks and Their Relatives, Carrier, J.C, Musick, J.A., Heithaus, M.C. (Eds.), Biology of Sharks and their Relatives (second ed.), Taylor and Francis Group, LLC, Boca Raton, FL, pp. 211-237. | spa |
dc.relation.references | 6. Bessudo, S., Soler, G. A., Klimley, A. P., Ketchum, J. T., Hearn, A., & Arauz, R. (2011). Residency of the scalloped hammerhead shark (Sphyrna lewini) at Malpelo Island and evidence of migration to other islands in the Eastern Tropical Pacific. Environmental Biology of Fishes, 91(2), 165-176. https://doi.org/10.15517/rbt.v68iS1.41202 | spa |
dc.relation.references | 7. Campbell, H. A., Hewitt, M., Watts, M. E., Peverell, S., & Franklin, C. E. (2012). Short-and long-term movement patterns in the freshwater whipray (Himantura dalyensis) determined by the signal processing of passive acoustic telemetry data. Marine and Freshwater Research, 63(4), 341-350. https://doi.org/10.1071/MF11229 | spa |
dc.relation.references | 8. Cartamil, D., Wegner, N. C., Aalbers, S., Sepulveda, C. A., Baquero, A., & Graham, J. B. (2010). Diel movement patterns and habitat preferences of the common thresher shark (Alopias vulpinus) in the Southern California Bight. Marine and Freshwater Research, 61(5), 596-604. https://doi.org/10.1071/MF09153 | spa |
dc.relation.references | 9. Chávez, E. J., Arauz, R., Hearn, A., Nalesso, E., & Steiner, T. (2020). Asociación de tiburones con el Monte Submarino Las Gemelas y primera evidencia de conectividad con la Isla del Coco, Pacífico de Costa Rica. Revista de Biología Tropical, 68(S1), S320-S329. https://doi.org/10.15517/rbt.v68iS1.41202 | spa |
dc.relation.references | 9. Chávez, E. J., Arauz, R., Hearn, A., Nalesso, E., & Steiner, T. (2020). Asociación de tiburones con el Monte Submarino Las Gemelas y primera evidencia de conectividad con la Isla del Coco, Pacífico de Costa Rica. Revista de Biología Tropical, 68(S1), S320-S329. https://doi.org/10.15517/rbt.v68iS1.41202 | spa |
dc.relation.references | 10. Chavez, F. P., Bertrand, A., Guevara-Carrasco, R., Soler, P., & Csirke, J. (2008). The northern Humboldt Current System: Brief history, present status and a view towards the future. Progress in Oceanography, 79(2–4), 95–105. https://doi.org/10.1016/j.pocean.2008.10.012 | spa |
dc.relation.references | 11. Cobos, M. E., Peterson, A. T., Barve, N., & Osorio-Olvera, L. (2019). kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7, e6281. https://doi.org/10.7717/peerj.6281 | spa |
dc.relation.references | 12. Coiraton, C., & Amezcua, F. (2020). In utero elemental tags in vertebrae of the scalloped hammerhead shark Sphyrna lewini reveal migration patterns of pregnant females. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-58735-8 | spa |
dc.relation.references | 13. Comisión para la Cooperación Ambiental (2017). Plan de acción de América del Norte para un comercio sustentable de especies de tiburón. http://www3.cec.org/islandora/es/item/11714-sustainable-trade-in-sharks-action-plan-north-america-es.pdf [Consultado el 18 de octubre de 2019]. | spa |
dc.relation.references | 14. Dixson, D. L., Jennings, A. R., Atema, J., & Munday, P. L. (2015). Odor tracking in sharks is reduced under future ocean acidification conditions. Global Change Biology, 21, 1454–1462. https://doi.org/10.1111/gcb.12678 | spa |
dc.relation.references | 15. Encina, F. M. M., González, J. M., & Paredes, J. C. (2020). Distribución actual y potencial de Dendroctonus mexicanus Hopkins bajo dos escenarios de cambio climático. Madera y bosques, 26(2), 2. https://doi.org/10.21829/myb.2020.2622002 | spa |
dc.relation.references | 16. England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., ... & Santoso, A. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature climate change, 4(3), 222-227. https://doi.org/10.1038/nclimate2106 | spa |
dc.relation.references | 17. Estupiñán-Montaño, C., Galván-Magaña, F., Tamburín, E., Sánchez-González, A., Villalobos-Ramírez, D. J., Murillo-Bohórquez, N., ... & Estupiñán-Ortiz, J. F. (2017). Trophic inference in two sympatric sharks, Sphyrna lewini and Carcharhinus falciformis (elasmobranchii: carcharhiniformes), based on stable isotope analysis at Malpelo Island, Colombia. Acta Ichthyologica et Piscatoria, 47(4), 357-364. https://doi.org/10.3750/AIEP/02177 | spa |
dc.relation.references | 18. Fangue, N. A., & Bennett, W. A. (2003). Thermal tolerance responses of laboratory-acclimated and seasonally acclimatized Atlantic stingray, Dasyatis sabina. Copeia, 2003(2), 315-325. https://doi.org/10.1643/0045-8511(2003)003[0315:TTROLA]2.0.CO;2 | spa |
dc.relation.references | 19. Flint, J., Flint, M., Limpus, C. J., & Mills, P. C. (2017). The impact of environmental factors on marine turtle stranding rates. PloS one, 12(8), e0182548. https://doi.org/10.1371/journal.pone.0182548 | spa |
dc.relation.references | 20. Flores-Aqueveque, V., Rojas, M., Aguirre, C., Arias, P.A., González, C. (2020). South Pacific Subtropical High from the late Holocene to the end of the 21st century: insights from climate proxies and general circulation models. Clim Past 16(1):79–99. https://doi.org/10.5194/cp-16-79-2020 | spa |
dc.relation.references | 21. Flores-Martínez, I. A., Torres-Rojas, Y. E., Galván-Magaña, F., & Ramos-Miranda, J. (2017). Diet comparison between silky sharks (Carcharhinus falciformis) and scalloped hammerhead sharks (Sphyrna lewini) off the south-west coast of Mexico. Journal of the Marine Biological Association of the United Kingdom, 97(2), 337–345. https://doi.org/10.1017/S0025315416000424 | spa |
dc.relation.references | 22. Francis, M. P. (2013). Temporal and spatial patterns of habitat use by juveniles of a small coastal shark (Mustelus lenticulatus) in an estuarine nursery. PloS one, 8(2), e57021. https://doi.org/10.1371/journal.pone.0057021 | spa |
dc.relation.references | 23. Francis, M. P. (2016). Distribution, habitat and movement of juvenile smooth hammerhead sharks (Sphyrna zygaena) in northern New Zealand. New Zealand Journal of Marine and Freshwater Research, 50(4), 506–525. https://doi.org/10.1080/00288330.2016.1171244 | spa |
dc.relation.references | 24. Fosu, B., He, J., & Liguori, G. (2020). Equatorial Pacific Warming Attenuated by SST Warming Patterns in the Tropical Atlantic and Indian Oceans. Geophysical Research Letters, 47(18), 0–2. https://doi.org/10.1029/2020GL088231 | spa |
dc.relation.references | 25. Gallagher, A. J., & Klimley, A. P. (2018). The biology and conservation status of the large hammerhead shark complex: the great, scalloped, and smooth hammerheads. Reviews in Fish Biology and Fisheries, 28(4), 777–794. https://doi.org/10.1007/s11160-018-9530-5 | spa |
dc.relation.references | 26. Gattuso, J. P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Pörtner, H. O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., … Turley, C. (2015). Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349(6243). https://doi.org/10.1126/science.aac4722 | spa |
dc.relation.references | 27. Gonzalez-Pestana, A. (2018). Habitat Suitability of Juvenile Smooth Hammerhead Shark (Sphyrna zyagena) off northern Peru [master’s thesis]. James Cook University, Australia. https://doi.org/10.13140/RG.2.2.21919.00167 | spa |
dc.relation.references | 28. Guillera‐Arroita, G., Lahoz‐Monfort, J.J., Elith, J. (2014). Maxent is not a presence –absence method: a comment on Thibaud et al. Methods in Ecology and Evolution, 5(11), 1192-1197. https://doi.org/10.1111/2041-210X.12252 | spa |
dc.relation.references | 29. Hearn, A., Ketchum, J., Klimley, A. P., Espinoza, E., & Peñaherrera, C. (2010). Hotspots within hotspots? Hammerhead shark movements around Wolf Island, Galapagos Marine Reserve. Marine Biology, 157(9), 1899–1915. https://doi.org/10.1007/s00227-010-1460-2 | spa |
dc.relation.references | 30. Hoffmayer, E. R., Franks, J. S., Driggers, W. B., & Howey, P. W. (2013). Diel vertical movements of a scalloped hammerhead, Sphyrna lewini, in the northern Gulf of Mexico. Bulletin of Marine Science, 89(2), 551–557. https://doi.org/10.5343/bms.2012.1048 | spa |
dc.relation.references | 31. Ibarra-Montoya, J. L., Rangel-Peraza, G., González-Farias, F. A., De Anda, J., Martínez-Meyer, E., & Macias-Cuellar, H. (2012). Uso del modelado de nicho ecológico como una herramienta para predecir la distribución potencial de Microcystis sp (cianobacteria) en la Presa Hidroeléctrica de Aguamilpa, Nayarit, México. Ambiente & Água-An Interdisciplinary Journal of Applied Science, 7(1), 218-234. https://doi.org/10.4136/ambi-agua.607 | spa |
dc.relation.references | 32. IDEAM-UNAL. (2018). La variabilidad y el cambio climáticos en Colombia. Bogota, D.C., 28. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023778/variabilidad.pdf [Consultado el 23 de agosto de 2019]. | spa |
dc.relation.references | 33. IPCC, 2019. Calentamiento global de 1,5 °C. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/09/IPCC-Special-Report-1.5-SPM_es.pdf [Consultado el 8 de agosto de 2020]. | spa |
dc.relation.references | 34. Kao, H. Y., & Lagerloef, G. S. (2015). Salinity fronts in the tropical Pacific Ocean. Journal of Geophysical Research: Oceans, 120(2), 1096-1106. https://doi.org/10.1002/2014JC010114 | spa |
dc.relation.references | 35. Ketchum, J. T., Hearn, A., Klimley, A. P., Espinoza, E., Peñaherrera, C., & Largier, J. L. (2014). Seasonal changes in movements and habitat preferences of the scalloped hammerhead shark (Sphyrna lewini) while refuging near an oceanic island. Marine Biology, 161(4), 755–767. https://doi.org/10.1007/s00227-013-2375-5 | spa |
dc.relation.references | 36. Ko, G. W., Dineshram, R., Campanati, C., Chan, V. B., Havenhand, J., & Thiyagarajan, V. (2014). Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the Pacific oyster. Environmental Science & Technology, 48(17), 10079-10088. https://doi.org/10.1021/es501611u | spa |
dc.relation.references | 37. Leach, K., Montgomery, W. I., & Reid, N. (2016). Modelling the influence of biotic factors on species distribution patterns. Ecological Modelling, 337, 96-106. https://doi.org/10.1016/j.ecolmodel.2016.06.008 | spa |
dc.relation.references | 38. Lezama-Ochoa, N., Murua, H., Hall, M., Román, M., Ruiz, J., Vogel, N., ... & Sancristobal, I. (2017). Biodiversity and habitat characteristics of the bycatch assemblages in fish aggregating devices (FADs) and school sets in the Eastern Pacific Ocean. Frontiers in Marine Science, 4, 265. https://doi.org/10.3389/fmars.2017.00265. | spa |
dc.relation.references | 39. Luna, P. D. M., & Cota, S. E. L. (2013). Cambio climático y amniotas marinos: evidencias, hipótesis e incertidumbre. Interciencia, 38(10), 712-718. | spa |
dc.relation.references | 40. Marie, A. D., Miller, C., Cawich, C., Piovano, S., & Rico, C. (2017). Fisheries-independent surveys identify critical habitats for young scalloped hammerhead sharks (Sphyrna lewini) in the Rewa Delta, Fiji. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-17152-0 | spa |
dc.relation.references | 41. Martin, C. S., Vaz, S., Ellis, J. R., Lauria, V., Coppin, F., & Carpentier, A. (2012). Modelled distributions of ten demersal elasmobranchs of the eastern English Channel in relation to the environment. Journal of Experimental Marine Biology and Ecology, 418–419, 91–103. https://doi.org/10.1016/j.jembe.2012.03.010 | spa |
dc.relation.references | 42. Mateo, R. G., Felicísimo, Á. M., & Muñoz, J. (2012). Modelos de distribución de especies y su potencialidad como recurso educativo interdisciplinar. Reduca (Biologia), 5(1). | spa |
dc.relation.references | 43. McGregor, S., Timmermann, A., Stuecker, M. F., England, M. H., Merrifield, M., Jin, F. F., & Chikamoto, Y. (2014). Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4(10), 888-892. https://doi.org/10.1038/nclimate2330 | spa |
dc.relation.references | 44. Nalesso, E., Hearn, A., Sosa-Nishizaki, O., Steiner, T., Antoniou, A., Reid, A., ... & Ketchum, J. T. (2019). Movements of scalloped hammerhead sharks (Sphyrna lewini) at Cocos Island, Costa Rica and between oceanic islands in the Eastern Tropical Pacific. PloS one, 14(3). https://doi.org/10.1371/journal.pone.0213741 | spa |
dc.relation.references | 45. Navarro-Monterroza, E., Arias, P. A., & Vieira, S. C. (2019). El Niño-Oscilación del Sur, fase Modoki, y sus efectos en la variabilidad espacio-temporal de la precipitación en Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 120. https://doi.org/10.18257/raccefyn.704 | spa |
dc.relation.references | 46. Oyarzún, D., & Brierley, C. M. (2019). The future of coastal upwelling in the Humboldt current from model projections. Climate Dynamics, 52(1–2), 599–615. https://doi.org/10.1007/s00382-018-4158-7 | spa |
dc.relation.references | 47. Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J., ... & Peterson, A. T. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological modelling, 263, 10-18. https://doi.org/10.1016/j.ecolmodel.2013.04.011 | spa |
dc.relation.references | 48. Papastamatiou, Y. P., Watanabe, Y. Y., Bradley, D., Dee, L. E., Weng, K., Lowe, C. G., & Caselle, J. E. (2015). Drivers of daily routines in an ectothermic marine predator: Hunt warm, rest warmer? PLoS ONE, 10(6), 1–16. https://doi.org/10.1371/journal.pone.0127807 | spa |
dc.relation.references | 49. Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008 | spa |
dc.relation.references | 50. Pistevos, J. C., Nagelkerken, I., Rossi, T., Olmos, M., & Connell, S. D. (2015). Ocean acidification and global warming impair shark hunting behaviour and growth. Scientific Reports, 5(1), 1-10. https://doi.org/10.1038/srep16293 | spa |
dc.relation.references | 51. Pliscoff, P., & Fuentes-Castillo, T. (2011). Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles. Revista de Geografía Norte Grande, (48), 61-79. http://dx.doi.org/10.4067/S0718-34022011000100005 | spa |
dc.relation.references | 52. Pörtner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315(5808), 95-97. https://doi.org/10.1126/science.1135471 | spa |
dc.relation.references | 53. Poulakis, G. R., Stevens, P. W., Timmers, A. A., Wiley, T. R., & Simpfendorfer, C. A. (2011). Abiotic affinities and spatiotemporal distribution of the endangered smalltooth sawfish, Pristis pectinata, in a south-western Florida nursery. Marine and Freshwater Research, 62(10), 1165-1177. https://doi.org/10.1071/MF11008 | spa |
dc.relation.references | 54. Rivas, M. L., Spínola, M., Arrieta, H., & Faife-Cabrera, M. (2018). Effect of extreme climatic events resulting in prolonged precipitation on the reproductive output of sea turtles. Animal Conservation, 21(5), 387–395. https://doi.org/10.1111/acv.12404 | spa |
dc.relation.references | 55. Roberts, C. M., O’Leary, B. C., McCauley, D. J., Cury, P. M., Duarte, C. M., Lubchenco, J., ... & Worm, B. (2017). Marine reserves can mitigate and promote adaptation to climate change. Proceedings of the National Academy of Sciences, 114(24), 6167-6175. https://doi.org/10.1073/pnas.1701262114 | spa |
dc.relation.references | 56. Rodríguez, E., & Giraldo, A. (2011). Características oceanográficas en isla Malpelo y su relación con la cuenca oceánica del Pacífico Colombiano. Boletín de Investigaciones Marinas y Costeras, (40), 19-32. https://doi.org/10.25268/bimc.invemar.2011.40.0.126 | spa |
dc.relation.references | 57. Rosa, R., Baptista, M., Lopes, V. M., Pegado, M. R., Ricardo Paula, J., Trübenbach, K., ... & Repolho, T. (2014). Early-life exposure to climate change impairs tropical shark survival. Proceedings of the Royal Society B: Biological Sciences, 281(1793), 20141738. https://doi.org/10.1098/rspb.2014.1738 | spa |
dc.relation.references | 58. Salinas de León, P., Hoyos-Padilla, E. M., & Pochet, F. (2017). First observation on the mating behaviour of the endangered scalloped hammerhead shark Sphyrna lewini in the Tropical Eastern Pacific. Environmental Biology of Fishes, 100(12), 1603–1608. https://doi.org/10.1007/s10641-017-0668-0 | spa |
dc.relation.references | 59. Salomón-Aguilar, C. A., Villavicencio-Garayzar, C. J., & Reyes-Bonilla, H. (2009). Zonas y temporadas de reproducción y crianza de tiburones en el Golfo de California: Estrategia para su conservación y manejo pesquero. Ciencias Marinas, 35(4), 369–388. | spa |
dc.relation.references | 60. Schlaff, A. M., Heupel, M. R., & Simpfendorfer, C. A. (2014). Influence of environmental factors on shark and ray movement, behaviour and habitat use: a review. Reviews in Fish Biology and Fisheries, 24(4). https://doi.org/10.1007/s11160-014-9364-8 | spa |
dc.relation.references | 61. Srivastava, V., Griess, V. C., & Padalia, H. (2018). Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecological Modelling, 385, 35-44. https://doi.org/10.1016/j.ecolmodel.2018.07.001 | spa |
dc.relation.references | 62. Soberón, J., Osorio-Olvera, L., & Peterson, T. (2017). Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Revista Mexicana de Biodiversidad, 88(2), 437-441. https://doi.org/10.1016/j.rmb.2017.03.011 | spa |
dc.relation.references | 63. Soler, G. A., Bessudo, S., & Guzmán, A. (2013). Long term monitoring of pelagic fishes at Malpelo Island, Colombia. Latin American Journal of Conservation, 3(2), 28-37. | spa |
dc.relation.references | 64. Speed, C. W., Meekan, M. G., Field, I. C., McMahon, C. R., & Bradshaw, C. J. (2012). Heat-seeking sharks: support for behavioural thermoregulation in reef sharks. Marine Ecology Progress Series, 463, 231-244. https://doi.org/10.3354/meps09864 | spa |
dc.relation.references | 65. Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F., & De Clerck, O. (2012). Bio‐ORACLE: a global environmental dataset for marine species distribution modelling. Global ecology and biogeography, 21(2), 272-281. https://doi.org/10.1111/j.1466-8238.2011.00656.x | spa |
dc.relation.references | 66. Varela, S., Mateo, R. G., García-Valdés, R., & Fernández-González, F. (2014). Macroecología y ecoinformática: sesgos, errores y predicciones en el modelado de distribuciones. Revista Ecosistemas, 23(1), 46-53. https://doi.org/10.7818/ECOS.2014.23-1-07 | spa |
dc.relation.references | 67. Vasquez, M. C., & Tomanek, L. (2019). Sirtuins as regulators of the cellular stress response and metabolism in marine ectotherms. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology, 236, 110528. https://doi.org/10.1016/j.cbpa.2019.110528 | spa |
dc.relation.references | 68. Wang, D., Gouhier, T. C., Menge, B. A., & Ganguly, A. R. (2015). Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518(7539), 390-394. https://doi.org/10.1038/nature14235 | spa |
dc.relation.references | 69. Xiu, P., Chai, F., Curchitser, E. N., & Castruccio, F. S. (2018). Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. Scientific Reports, October 2017, 1–9. https://doi.org/10.1038/s41598-018-21247-7 | spa |
dc.relation.references | 70. Yates, P. M., Heupel, M. R., Tobin, A. J., & Simpfendorfer, C. A. (2015). Ecological drivers of shark distributions along a tropical coastline. PLoS ONE, 10(4), 1–18. https://doi.org/10.1371/journal.pone.0121346 | spa |
dc.relation.references | 71. Zanella, I., López-Garro, A., McComb-Kobza, D. M., Golfín-Duarte, G., Pérez-Montero, M., & Morales, J. (2016). First record of young-of-the-year Scalloped hammerhead shark, Sphyrna lewini (Carcharhiniformes: Sphyrnidae) from Isla del Coco National Park, Costa Rica. Revista de Biologia Tropical, 64(1), S201–S204. https://doi.org/10.15517/rbt.v64i1.23448 | spa |
dc.relation.references | 72. Zheng, X. T., Xie, S. P., Lv, L. H., & Zhou, Z. Q. (2016). Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. Journal of Climate, 29(20), 7265–7279. https://doi.org/10.1175/JCLI-D-16-0039.1 | spa |
dc.subject.proposal | KUENM | spa |
dc.subject.proposal | Modelación de nicho ecológico | spa |
dc.subject.proposal | Surgencias | spa |
dc.subject.proposal | Bio-ORACLE | spa |
dc.subject.proposal | Tiburón martillo | spa |
dc.subject.proposal | Cambio climático | spa |
dc.publisher.grantor | Universidad Militar Nueva Granada | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | * |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | spa |
dc.identifier.instname | instname:Universidad Militar Nueva Granada | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Militar Nueva Granada | spa |
dc.identifier.repourl | repourl:https://repository.unimilitar.edu.co | spa |
dc.rights.local | Acceso abierto | spa |
dc.coverage.sede | Campus UMNG | spa |