Show simple item record

dc.contributor.advisorBriceño Zuluaga, Francisco Javier
dc.contributor.authorRodríguez Burgos, Aura María
dc.coverage.spatialCorredor Marino del Pacífico Este Tropicalspa
dc.date.accessioned2021-08-26T16:50:48Z
dc.date.available2021-08-26T16:50:48Z
dc.date.issued2020-04-05
dc.identifier.urihttp://hdl.handle.net/10654/38481
dc.description.abstractLa variabilidad y cambio climático por influencia antrópica ha traído consigo alteraciones en ecosistemas marinos que a su vez han afectado la fisiología y metabolismo de especies de ectotermos como el tiburón martillo común (Sphyrna lewini). No obstante, se desconoce acerca del impacto que podrá tener la variabilidad climática sobre la distribución de esta especie, en especial en el Corredor Marino del Pacífico Este Tropical, considerada una zona que alberga gran biodiversidad marina. El objetivo de este proyecto fue evaluar el efecto variabilidad y cambio climático sobre la distribución oceanográfica del tiburón martillo (Sphyrna lewini) en el Corredor Marino del Pacífico Este Tropical, haciendo un contraste entre el escenario presente y el futuro para el 2050. Como metodología se realizó un modelo de nicho ecológico a partir del paquete KUENM del software R que usa el algoritmo de máxima entropía (MaxEnt). La modelación se hizo para el año 2050 bajo escenarios RCP2.6 y RCP8.5. Se realizaron un total de 952 modelos de los cuales solo uno cumplió con los parámetros estadísticos establecidos como óptimos. Hacia escenarios futuros, la idoneidad ambiental para S.lewini muestra que esta especie migraría hacia el sur en el Pacífico chileno, asociado a un posible calentamiento que tendrá la zona ecuatorial y al posible enfriamiento que tendrá la zona subtropical del Pacífico Sur para el 2050, producto de cambios en la dinámica oceanográfica.spa
dc.description.sponsorshipMigramarspa
dc.description.sponsorshipFundación Alejandro Ángel Escobarspa
dc.description.tableofcontentsAGRADECIMIENTOS 4 1. CAPÍTULO I: ARTÍCULO DE REVISIÓN 5 1.1. INTRODUCCIÓN 5 1.2. METODOLOGÍA 6 1.3. Océano Pacífico Oriental y su interacción con las especies marinas 6 1.3.1. Ecología de Sphyrna lewini y su interacción con el Océano Pacífico 7 1.3.2. Preferencia alimenticia de Sphyrna lewini 7 1.3.3. Preferencia de hábitat de Sphyrna lewini 8 1.4. Dinámica oceanográfica regional en el Pacífico Sur 11 1.5. Dinámica atmosférica regional del Pacífico sur 14 1.6. Dinámica de las migraciones del tiburón martillo durante ENSO en el CMAR 15 1.6.1. Migraciones de Sphyrna lewini en el CMAR 17 1.6.2. Migraciones de Sphyrna lewini y zonas de pesca 19 1.6.3. Reproducción de Sphyrna lewini y su relación con ENSO en el CMAR 19 1.7. Variabilidad climática y biodiversidad del Pacífico sur 20 1.8. CONCLUSIONES 21 1.9. BIBLIOGRAFÍA 22 1.10 ANEXOS 29 2. CAPÍTULO II: ARTÍCULO DE INVESTIGACIÓN 32 2.1 RESUMEN 32 3. INTRODUCCIÓN 32 4. METODOLOGÍA 35 4.1 Área de estudio 35 4.2 Obtención de registros y predictores climáticos 35 4.3 Modelado de nicho ecológico 36 4.4 Tratamiento de ocurrencias 37 4.5 Tratamiento de información ambiental 37 4.6 Calibración del modelo 38 4.7 Evaluación y selección del modelo final 38 4.8 Análisis de extrapolación 39 5. RESULTADOS 39 6. DISCUSIÓN 41 6.1 Curvas de respuesta 41 6.2 Mapas de idoneidad ambiental 44 7. RECOMENDACIONES 45 8. CONCLUSIONES 46 9. BIBLIOGRAFÍA 47 10. ANEXOS 53spa
dc.format.mimetypeapplicaction/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleImpacto de la variabilidad y cambio climático en la distribución de Sphyrna lewini en el Corredor Marino del Pacífico Este Tropicalspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.lembCAMBIOS CLIMATICOSspa
dc.subject.lembTIBURONESspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa
dc.description.abstractenglishClimate variability and change due to anthropic influence has brought alterations in marine ecosystems, besides, have affected the physiology and metabolism of ectotherm species such as the common hammerhead shark (Sphyrna lewini). Moreover, it is unknown about climate variability impact may have on the distribution of this species, especially in the Eastern Tropical Pacific Marine Corridor. It is considered an area that harbors great marine biodiversity. The objective of this project was to evaluate the effect of climate variability and climate change on the oceanographic distribution of the hammerhead shark (Sphyrna lewini) in the Eastern Tropical Pacific Marine Corridor. We made a contrast between two scenarios: present and future (2050). As a methodology, we made an ecological niche model from the KUENM package of R software that uses the maximum entropy algorithm (MaxEnt). The modeling was done for the year 2050 under scenarios RCP2.6 and RCP8.5. A total of 952 models were made, of which only one had the statistical parameters established as optimal. Towards future scenarios, the environmental suitability for S.lewini shows that this species would migrate to the south in the Chilean Pacific. In fact, it is associated with a possible warming that the equatorial zone will have and the possible cooling that the subtropical zone of the South Pacific will have by 2050, product of changes in oceanographic dynamics.spa
dc.title.translatedImpact of climate variability and climare change on the distribution of Sphyrna lewini in the Eastern Tropical Pacific Marine Corridorspa
dc.subject.keywordsKUENMspa
dc.subject.keywordsEcological niche modelingspa
dc.subject.keywordsUpwellingsspa
dc.subject.keywordsBio-ORACLEspa
dc.subject.keywordsHammerhead Sharkspa
dc.subject.keywordsClimate changespa
dc.publisher.programBiología Aplicadaspa
dc.creator.degreenameBiólogospa
dc.description.degreelevelPregradospa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.relation.references1. Ancapichún, S., & Garcés-Vargas, J. (2015). Variabilidad del Anticiclón Subtropical del Pacífico Sudeste y su impacto sobre la temperatura superficial del mar frente a la costa centro-norte de Chile. Ciencias marinas, 41(1), 1-20.spa
dc.relation.references2. Aguilar Castro, N. A. (2003). Ecología trófica de juveniles del tiburón martillo Sphyrna lewini (Griffith & Smith, 1834) en el Golfo de California (Doctoral dissertation, Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas).spa
dc.relation.references3. Acevedo, J. A. A., & Hernández, G. M. V. (2013). Fenología de ambientes tropicales en el marco de la teledetección. GeoFocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, (13_2), 195-211.spa
dc.relation.references4. Balasubramanian, A. (2014). Oceanography: The Pacific Ocean. University of Mysore, Mysore, India.spa
dc.relation.references5. Baum, J. K., & Worm, B. (2009). Cascading top‐down effects of changing oceanic predator abundances. Journal of animal ecology, 78(4), 699-714.spa
dc.relation.references6. Bessudo, S., Soler, G. A., Klimley, A. P., Ketchum, J. T., Hearn, A., & Arauz, R. (2011a). Residency of the scalloped hammerhead shark (Sphyrna lewini) at Malpelo Island and evidence of migration to other islands in the Eastern Tropical Pacific. Environmental Biology of Fishes, 91(2), 165-176.spa
dc.relation.references7. Bessudo, S., Soler, G. A., Klimley, P. A., Ketchum, J., Arauz, R., Hearn, A., ... & Calmettes, B. (2011b). Vertical and horizontal movements of the scalloped hammerhead shark (Sphyrna lewini) around Malpelo and Cocos Islands (Tropical Eastern Pacific) using satellite telemetry. Boletín de Investigaciones Marinas y Costeras-INVEMAR, 40, 91-106.spa
dc.relation.references8. Bezerra, N. P. A., Macena, B. C. L., Travassos, P., Afonso, P., & Hazin, F. H. V. (2019). Evidence of site fidelity and deep diving behaviour of scalloped hammerhead shark (Sphyrna lewini) around the Saint Peter and Saint Paul Archipelago, in the equatorial Mid-Atlantic ridge. Marine and Freshwater Research.spa
dc.relation.references9. Braxmeier, H. (2010). Corrientes marinas de Galápagos. [Figura]. Recuperado de https://ecuadorgalapagosinfo.com/islas-galapagos/corrientes-marinas/spa
dc.relation.references10. Bressan, A., & Constantin, A. (2019). The deflection angle of surface ocean currents from the wind direction. Journal of Geophysical Research: Oceans, 124(11), 7412-7420.spa
dc.relation.references11. Briceño-Zuluaga, F. J., Sifeddine, A., Caquineau, S., Cardich, J., Salvatteci, R., Gutierrez, D., ... & Machado, C. (2016). Terrigenous material supply to the Peruvian central continental shelf (Pisco, 14° S) during the last 1000 years: paleoclimatic implications. Climate of the Past, 12(3), 787-798.spa
dc.relation.references12. Camino, E. R. (2018). Anomalía de temperatura de la superficie del mar (SST). Revista Tiempo y Clima, 5(59).spa
dc.relation.references13. Chan, F., Barth, J. A., Lubchenco, J., Kirincich, A., Weeks, H., Peterson, W. T., & Menge, B. A. (2008). Emergence of anoxia in the California current large marine ecosystem. Science, 319(5865), 920-920.spa
dc.relation.references14. Chávez, E. J., Arauz, R., Hearn, A., Nalesso, E., & Steiner, T. (2020). Asociación de tiburones con el Monte Submarino Las Gemelas y primera evidencia de conectividad con la Isla del Coco, Pacífico de Costa Rica. Revista de Biología Tropical, 68(S1), S320-S329.spa
dc.relation.references15. Chavez, F. P., Bertrand, A., Guevara-Carrasco, R., Soler, P., & Csirke, J. (2008). The northern Humboldt Current System: Brief history, present status and a view towards the future. Progress in Oceanography, 79(2–4), 95–105spa
dc.relation.references16. Chavez, F. P., Ryan, J., Lluch-Cota, S. E., & Ñiquen, M. (2003). From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science, 299(5604), 217-221.spa
dc.relation.references17. Clarke, S., Coelho, R., Francis, M., Kai, M., Kohin, S., Liu, K. M., ... & Smart, J. (2015). Report of the pacific shark life history expert panel workshop, 28-30 april 2015. Western Central Pacific Fisheries Commission Scientific Committee eleventh regular session. Recuperado de https://www.wcpfc.int/system/files/EB-IP-13%20Workshop% 20Shark%20Life%20History%20Expert%20Panel%202.pdfspa
dc.relation.references18. Coetzee, H. J., Naidoo, K., & Wagenaar, I. (2020). A first observation of spermatogenesis in mature male scalloped hammerheads (Sphyrna lewini) from Zinkwazi, KwaZulu-Natal, South Africa. Fish Physiology and Biochemistry, 1-11.spa
dc.relation.references19. Coiraton, C., & Amezcua, F. (2020). In utero elemental tags in vertebrae of the scalloped hammerhead shark Sphyrna lewini reveal migration patterns of pregnant females. Scientific reports, 10(1), 1-13.spa
dc.relation.references20. Coiraton, C., Tovar‐Ávila, J., Garcés‐García, K. C., Rodríguez‐Madrigal, J. A., Gallegos‐Camacho, R., Chávez‐Arrenquín, D. A., & Amezcua, F. (2019). Periodicity of the growth‐band formation in vertebrae of juvenile scalloped hammerhead shark Sphyrna lewini from the Mexican Pacific Ocean. Journal of fish biology, 95(4), 1072-1085spa
dc.relation.references21. Daza Suárez, A. (2017). Propuesta de regionalización del Pacífico Colombiano a partir de imágenes de color del océano (Bachelor's thesis, Universidad de Bogotá Jorge Tadeo Lozano).spa
dc.relation.references22. Dembicki, H. (2016). Practical petroleum geochemistry for exploration and production. Elsevier.spa
dc.relation.references23. Devis‐Morales, A., Schneider, W., Montoya‐Sánchez, R. A., & Rodríguez‐Rubio, E. (2008). Monsoon‐like winds reverse oceanic circulation in the Panama Bight. Geophysical Research Letters, 35(20).spa
dc.relation.references24. Drew, M., White, W. T., Dharmadi, Harry, A. V. and Huveneers, C. 2015. Age, growth and maturity of the pelagic thresher Alopias pelagicus and the scalloped hammerhead Sphyrna lewini. Journal of Fish Biology, 86(1): 333-354spa
dc.relation.references25. Duffy, L. M., Olson, R. J., Lennert-Cody, C. E., Galván-Magaña, F., Bocanegra-Castillo, N., & Kuhnert, P. M. (2015). Foraging ecology of silky sharks, Carcharhinus falciformis, captured by the tuna purse-seine fishery in the eastern Pacific Ocean. Marine Biology, 162(3), 571-593.spa
dc.relation.references26. Estupiñán-Montaño, C., Cedeño-Figueroa, L. G., & Galván-Magaña, F. (2009). Hábitos alimentarios del tiburón martillo Sphyrna lewini (Griffith & Smith, 1834) (Chondrichthyes) en el Pacífico ecuatoriano. Revista de biología marina y oceanografía, 44(2), 379-386.spa
dc.relation.references27. Estupiñán-Montaño, C., Galvan-Magana, F., Tamburín, E., Sanchez-Gonzalez, A., Villalobos-Ramírez, D. J., Murillo-Bohórquez, N., ... & Estupiñán-Ortiz, J. F. (2017). Trophic inference in two sympatric sharks, Sphyrna lewini and Carcharhinus falciformis (elasmobranchii: carcharhiniformes), based on stable isotope analysis at Malpelo Island, Colombia. Acta Ichthyologica et Piscatoria, 47(4), 357-364.spa
dc.relation.references28. Evans, K., Bax, N., Bernal, P., Corrales, M. B., Cryer, M., Forsterra, G., ... & Rice, J. (2016). D. South Pacific Ocean. Recuperado de https://www.un.org/depts/los/global_reporting/WOA_RPROC/Chapter_36D.pdf%20consultado%2025.03.2020spa
dc.relation.references29. Fernández-Álamo, M. A., & Färber-Lorda, J. (2006). Zooplankton and the oceanography of the eastern tropical Pacific: a review. Progress in Oceanography, 69(2-4), 318-359.spa
dc.relation.references30. Field, I. C., Meekan, M. G., Buckworth, R. C., & Bradshaw, C. J. (2009). Susceptibility of sharks, rays and chimaeras to global extinction. Advances in marine biology, 56, 275-363.spa
dc.relation.references31. Flores Aqueveque, V., Rojas, M., Aguirre, C., Arias, P. A., & González, C. (2020). South Pacific Subtropical High from the late Holocene to the end of the 21st century: insights from climate proxies and general circulation models. Clim Past 16(1):79–99spa
dc.relation.references32. Friedlander, A. M., Zgliczynski, B. J., Ballesteros, E., Aburto-Oropeza, O., Bolaños, A., & Sala, E. (2012). The shallow-water fish assemblage of Isla del Coco National Park, Costa Rica: structure and patterns in an isolated, predator-dominated ecosystem. Revista de Biología Tropical, 60, 321-338.spa
dc.relation.references33. Gallagher, A. J., & Klimley, A. P. (2018). The biology and conservation status of the large hammerhead shark complex: the great, scalloped, and smooth hammerheads. Reviews in Fish Biology and Fisheries, 28(4), 777-794spa
dc.relation.references34. Hays, G. C. (2017). Ocean currents and marine life. Current Biology, 27(11), 470-473.spa
dc.relation.references35. Hearn A., Klimley, P., & Peñaherrera, C. (2010a). Hotspots within hotspots? Hammerhead shark movements around Wolf Island. Galapagos Marine Reserve. Marine Biology, 157, 1899-1915spa
dc.relation.references36. Hearn, A., Ketchum, J., Klimley, A. P., Espinoza, E., & Penaherrera, C. (2010b). Hotspots within hotspots? hammerhead shark movements around wolf island, galapagos marine reserve. Marine Biology, 157(9), 1899-1915.spa
dc.relation.references37. Hernández Rodríguez, M. A. (2017). Movimientos de sub-adultos de tiburón martillo, Sphyrna lewini, en las Islas Galápagos. Tesis de pregrado. Universidad San Francisco de Quito, Ecuador.spa
dc.relation.references38. Heupel, M. R., Carlson, J. K., & Simpfendorfer, C. A. (2007). Shark nursery areas: concepts, definition, characterization, and assumptions. Marine Ecology Progress Series, 337, 287-297.spa
dc.relation.references39. Hobday, A. J., Oliver, E. C., Gupta, A. S., Benthuysen, J. A., Burrows, M. T., Donat, M. G., ... & Smale, D. A. (2018). Categorizing and naming marine heatwaves. Oceanography, 31(2), 162-173.spa
dc.relation.references40. Hoffmayer, E. R., Franks, J. S., Driggers, W. B., & Howey, P. W. (2013). Diel vertical movements of a scalloped hammerhead, Sphyrna lewini, in the northern Gulf of Mexico. Bulletin of Marine Science, 89(2), 551–557.spa
dc.relation.references41. Hoyos-Padilla, E. M., Ketchum, J. T., Klimley, A. P., & Galván-Magaña, F. (2014). Ontogenetic migration of a female scalloped hammerhead shark Sphyrna lewini in the Gulf of California. Animal Biotelemetry, 2(1), 17.spa
dc.relation.references42. Huguet Alzina, A. (2017). Estudio experimental de la circulación general atmosférica y oceánica a escala de laboratorio (Tesis de Maestría). Universidad Politécnica de Valencia, España.spa
dc.relation.references43. Iglesias, I. (2010). Interacción océano-atmósfera: Influencia de la SST y de la circulación termohalina (Doctoral dissertation, Tesis doctoral. Universidad de Vigo).spa
dc.relation.references44. INVEMAR. (2010). Especies, ensamblajes y paisajes de los bloques marinos sujetos a exploración de hidrocarburos. Informe de actividades INVEMAR – ANH Fase III-Pacífico Caracterización de la megafauna y el pláncton del Pacífico colombiano, Santa Marta, 270p.spa
dc.relation.references45. Jerez-Guerrero, M., Criales-Hernández, M. I., & Giraldo, A. (2017). Copépodos epipelágicos en Bahía Cupica, Pacífico colombiano: composición de especies, distribución y variación temporal. Revista de Biología Tropical, 65(3), 1046-1061.spa
dc.relation.references46. Jorgensen, S. J., Klimley, A. P., & Muhlia‐Melo, A. F. (2009). Scalloped hammerhead shark Sphyrna lewini, utilizes deep‐water, hypoxic zone in the Gulf of California. Journal of Fish Biology, 74(7), 1682-1687.spa
dc.relation.references47. Kang, S. M., Held, I. M., & Xie, S. P. (2014). Contrasting the tropical responses to zonally asymmetric extratropical and tropical thermal forcing. Climate dynamics, 42(7-8), 2033-2043.spa
dc.relation.references48. Ketchum, J.T., Hearn, A., Klimley, A.P., Espinoza, E., Peñaherrera, C., Largier, J.L. (2014a). Seasonal changes inmovements and habitat preferences of the scalloped hammerhead shark (Sphyrna lewini) while refuging near an oceanic island. Marine Biology 161:755–767.spa
dc.relation.references49. Ketchum, J. T., Hearn, A., Klimley, A. P., Peñaherrera, C., Espinoza, E., Bessudo, S., ... & Arauz, R. (2014b). Inter-island movements of scalloped hammerhead sharks (Sphyrna lewini) and seasonal connectivity in a marine protected area of the eastern tropical Pacific. Marine Biology, 161(4), 939-951.spa
dc.relation.references50. Klimley, A. P., & Butler, S. B. (1988). Immigration and emigration of a pelagic fish assemblage to seamounts in the Gulf of California related to water mass movements using satellite imagery. Marine ecology progress series. Oldendorf, 49(1), 11-20.spa
dc.relation.references51. Lea, R., Rosenblatt, R. (2000). Observations on fishes associated with the 1997–98 El Niño off California. Reports of California Cooperative Oceanic Fisheries Investigations 41,117–129.spa
dc.relation.references52. Li, Y., Chen, Q., Liu, X., Li, J., Xing, N., Xie, F., ... & Wang, Z. (2019). Long‐term trend of the tropical Pacific trade winds under global warming and its causes. Journal of Geophysical Research: Oceans, 124(4), 2626-2640.spa
dc.relation.references53. Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A., & Lorda, J. (2019). Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Marine Biodiversity Records, 12(1), 13spa
dc.relation.references54. López-Victoria, M., Cantera, J. R., Díaz, J. M., Rozo, D. M., Posada, B. O., & Osorno, A. (2004). Informe del Estado de los Ambientes y Recursos Marinos y Costeros en Colombia. Año 2003. Instituto de Investigaciones Marinas y Costeras INVEMAR, Santa Marta, Colombia.spa
dc.relation.references55. Maturana, J., Bello, M., & Manley, M. (1997). Antecedentes históricos y descripción del fenómeno El Niño, Oscilación del Sur. El Niño-La Niña, 2000, 13-27.spa
dc.relation.references56. Meyer, C. G., Holland, K. N., & Papastamatiou, Y. P. (2007). Seasonal and diel movements of giant trevally Caranx ignobilis at remote Hawaiian atolls: implications for the design of marine protected areas. Marine Ecology Progress Series, 333, 13-25.spa
dc.relation.references57. Montealegre, J. E. (2014). Actualización del Componente Meteorológico del Modelo Institucional del ideam sobre el Efecto Climático de los Fenómenos El Niño y La Niña en Colombia, como insumo para el Atlas Climatológico. Informe Final. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Bogotá, Colombiaspa
dc.relation.references58. Naito, Y., Costa, D. P., Adachi, T., Robinson, P. W., Peterson, S. H., Mitani, Y., & Takahashi, A. (2017). Oxygen minimum zone: An important oceanographic habitat for deep‐diving northern elephant seals, Mirounga angustirostris. Ecology and evolution, 7(16), 6259-6270.spa
dc.relation.references59. Nalesso, E., Hearn, A., Sosa-Nishizaki, O., Steiner, T., Antoniou, A., Reid, A., ... & Ketchum, J. T. (2019). Movements of scalloped hammerhead sharks (Sphyrna lewini) at Cocos Island, Costa Rica and between oceanic islands in the Eastern Tropical Pacific. PloS one, 14(3).spa
dc.relation.references60. Navarro-Monterroza, E., Arias, P. A., & Vieira, S. C. (2019). El Niño-Oscilación del Sur, fase Modoki, y sus efectos en la variabilidad espacio-temporal de la precipitación en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 120-132.spa
dc.relation.references61. Noone, K. J., Sumaila, U. R., & Diaz, R. J. (2013). Managing ocean environments in a changing climate: sustainability and economic perspectives. Newnes.spa
dc.relation.references62. Papastamatiou, Y. P., Watanabe, Y. Y., Bradley, D., Dee, L. E., Weng, K., Lowe, C. G., & Caselle, J. E. (2015). Drivers of daily routines in an ectothermic marine predator: hunt warm, rest warmer?. PLoS One, 10(6).spa
dc.relation.references63. Paulmier, A., & Ruiz-Pino, D. (2009). Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography, 80(3-4), 113-128.spa
dc.relation.references64. Pérez-Jiménez, J. C. (2014). Historical records reveal potential extirpation of four hammerhead sharks (Sphyrna spp.) in Mexican Pacific waters. Reviews in fish biology and fisheries, 24(2), 671-683.spa
dc.relation.references65. Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., & Levin, S. A. (2013). Marine taxa track local climate velocities. Science, 341(6151), 1239-1242.spa
dc.relation.references66. Pistevos, J. C., Nagelkerken, I., Rossi, T., Olmos, M., & Connell, S. D. (2015). Ocean acidification and global warming impair shark hunting behaviour and growth. Scientific Reports, 5(1), 1-10.spa
dc.relation.references67. Poveda, G. (2004). La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 28(107), 201-222.spa
dc.relation.references68. Puentes, V. & Moncaleano, A. (Eds.). (2012). Sistema de Gestión Regional para el Uso Sostenible de los Recursos Pesqueros del Corredor Marino del Pacífico Este Tropical (CMAR). Resultados de Gestión en Colombia. Fundación Malpelo y otros Ecosistemas Marinos. 184 págs.spa
dc.relation.references69. Ramirez, J. (2006). Corrientes oceánicas. Sigma, 40, 20.spa
dc.relation.references70. Reyna Moreno, J. A., Devis Morales, A., Cantera Kintz, J. R., Ángel Cárdenas, E., Cabrales Vernaza, E., Lozano Iriarte, J. A., ... & Pardo Rojas, Z. (2013). El Océano Maravilla Terrestre. Comisión Colombiana del Océano.spa
dc.relation.references71. Rivas, M. L., Spínola, M., Arrieta, H., & Faife-Cabrera, M. (2018). Effect of extreme climatic events resulting in prolonged precipitation on the reproductive output of sea turtles. Animal Conservation, 21(5), 387–395spa
dc.relation.references72. Roberts, C. M., O’Leary, B. C., McCauley, D. J., Cury, P. M., Duarte, C. M., Lubchenco, J., ... & Worm, B. (2017). Marine reserves can mitigate and promote adaptation to climate change. Proceedings of the National Academy of Sciences, 114(24), 6167-6175spa
dc.relation.references73. Rodríguez-Ponga, R. (2014). El océano Pacífico. In El océano pacífico: conmemorando 500 años de su descubrimiento (pp. 143-146). Fundación Ramón Areces.spa
dc.relation.references74. Rodriguez-Rubio, E., & Stuardo, J. (2002). Variability of photosynthetic pigments in the Colombian Pacific Ocean and its relationship with the wind field using ADEOS-I data. Journal of Earth System Science, 111(3), 227-236.spa
dc.relation.references75. Romero, M. J. R., & Molina, J. J. C. (2001). La dinámica atmosférica en el flanco suroccidental de Europa: la Península Ibérica. Nimbus: Revista de climatología, meteorología y paisaje, (7), 5-20.spa
dc.relation.references76. Rosa, R., Baptista, M., Lopes, V. M., Pegado, M. R., Ricardo Paula, J., Trübenbach, K., ... & Repolho, T. (2014). Early-life exposure to climate change impairs tropical shark survival. Proceedings of the Royal Society B: Biological Sciences, 281(1793), 20141738.spa
dc.relation.references77. Salinas-de-León, P., Hoyos-Padilla, E. M., & Pochet, F. (2017). First observation on the mating behaviour of the endangered scalloped hammerhead shark Sphyrna lewini in the Tropical Eastern Pacific. Environmental Biology of Fishes, 100(12), 1603-1608.spa
dc.relation.references78. Scaife, A., Guilyardi, E., Cain, M., & Gilbert, A. (2019). What is the El Niño–Southern Oscillation? Weather, 74(7), 250–251.spa
dc.relation.references79. Schneider, T., Bischoff, T., & Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513(7516), 45-53.spa
dc.relation.references80. Schneider, W., Fuenzalida, R., & Garcés, J. (2004). Corrientes marinas y masas de agua. Biología Marina y Oceanografía: Conceptos y proceso. Ed. C. Werliger, 1.spa
dc.relation.references81. Schott, F. A., Mccreary, J. P., & Johnson, G. C. (2004). Shallow overturning circulations of the tropical-subtropical oceans. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr, 147, 261-304.spa
dc.relation.references82. Sherman, K. & Hempel, G. (2008). The UNEP large marine ecosystem report: a perspective on changing conditions in LMEs of the world’s Regional Seas. UNEP Regional Seas report and studies No. 182. United Nations Environment Programme, Nairobi.spa
dc.relation.references83. Smale, D. A., Wernberg, T., Oliver, E. C., Thomsen, M., Harvey, B. P., Straub, S. C., ... & Feng, M. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 9(4), 306-312.spa
dc.relation.references84. Soler, G. A., Bessudo, S., & Guzmán, A. (2013). Long term monitoring of pelagic fishes at Malpelo Island, Colombia. Latin American Journal of Conservation, 3(2).spa
dc.relation.references85. Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., ... & Körtzinger, A. (2012). Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature Climate Change, 2(1), 33-37.spa
dc.relation.references86. Sumaila, U. R., & Tai, T. C. (2020). End overfishing and increase the resilience of the ocean to climate change. Frontiers in Marine Science, 7, 523.spa
dc.relation.references87. Tewksbury, J. J., Huey, R. B., & Deutsch, C. A. (2008). Putting the heat on tropical animals. Science, 320(5881), 1296-1297.spa
dc.relation.references88. Villegas, N., Barrientos, J. C., & Málikov, I. (2012). Relación entre parámetros océano-atmosféricos y la producción del café verde en Colombia. Revista Colombiana de Ciencias Hortícolas, 6(1), 88-95.spa
dc.relation.references89. WMO. (2014). El Niño/ Southern Oscillation. Recuperado de https://library.wmo.int/doc_num.php?explnum_id=7888 consultado 23.02.2020)spa
dc.relation.references90. Wunsch, C. (2002). What is the thermohaline circulation? Science, 298(5596), 1179-1181.spa
dc.relation.references91. Zanella, I., & López-Garro, A. (2015). Abundancia, reproducción y tallas del tiburón martillo Sphyrna lewini (Carcharhiniformes: Sphyrnidae) en la pesca artesanal de Golfo Dulce, Pacífico de Costa Rica. Revista de Biología Tropical, 63, 307-317.spa
dc.relation.references92. Zanella, I., López-Garro, A., McComb-Kobza, D. M., Golfín-Duarte, G., Pérez-Montero, M., & Morales, J. (2016). First record of young-of-the-year Scalloped hammerhead shark, Sphyrna lewini (Carcharhiniformes: Sphyrnidae) from Isla del Coco National Park, Costa Rica. Revista de Biología Tropical, 201-204spa
dc.relation.references1. Andrzejaczek, S., Gleiss, A. C., Jordan, L. K., Pattiaratchi, C. B., Howey, L. A., Brooks, E. J., & Meekan, M. G. (2018). Temperature and the vertical movements of oceanic whitetip sharks, Carcharhinus longimanus. Scientific reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-26485-3.spa
dc.relation.references2. Bakun, A., Black, B. A., Bograd, S. J., García-Reyes, M., Miller, A. J., Rykaczewski, R. R., & Sydeman, W. J. (2015). Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Current Climate Change Reports, 1(2), 85–93. https://doi.org/10.1007/s40641-015-0008-4spa
dc.relation.references3. Bentlage, B., Peterson, A. T., Barve, N., & Cartwright, P. (2013). Plumbing the depths: extending ecological niche modelling and species distribution modelling in three dimensions. Global Ecology and Biogeography, 22(8), 952-961. https://doi.org/10.1111/geb.12049spa
dc.relation.references4. Belmadani, A., Echevin, V., Codron, F., Takahashi, K., & Junquas, C. (2014). What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile?. Climate dynamics, 43(7-8), 1893-1914. https://doi.org/10.1007/s00382-013-2015-2spa
dc.relation.references5. Bernal, D., Carlson, J. K., Goldman, K. J., & Lowe, C. G. (2012). Energetics, Metabolism, and Endothermy in Sharks and Rays. Biology of Sharks and Their Relatives, Carrier, J.C, Musick, J.A., Heithaus, M.C. (Eds.), Biology of Sharks and their Relatives (second ed.), Taylor and Francis Group, LLC, Boca Raton, FL, pp. 211-237.spa
dc.relation.references6. Bessudo, S., Soler, G. A., Klimley, A. P., Ketchum, J. T., Hearn, A., & Arauz, R. (2011). Residency of the scalloped hammerhead shark (Sphyrna lewini) at Malpelo Island and evidence of migration to other islands in the Eastern Tropical Pacific. Environmental Biology of Fishes, 91(2), 165-176. https://doi.org/10.15517/rbt.v68iS1.41202spa
dc.relation.references7. Campbell, H. A., Hewitt, M., Watts, M. E., Peverell, S., & Franklin, C. E. (2012). Short-and long-term movement patterns in the freshwater whipray (Himantura dalyensis) determined by the signal processing of passive acoustic telemetry data. Marine and Freshwater Research, 63(4), 341-350. https://doi.org/10.1071/MF11229spa
dc.relation.references8. Cartamil, D., Wegner, N. C., Aalbers, S., Sepulveda, C. A., Baquero, A., & Graham, J. B. (2010). Diel movement patterns and habitat preferences of the common thresher shark (Alopias vulpinus) in the Southern California Bight. Marine and Freshwater Research, 61(5), 596-604. https://doi.org/10.1071/MF09153spa
dc.relation.references9. Chávez, E. J., Arauz, R., Hearn, A., Nalesso, E., & Steiner, T. (2020). Asociación de tiburones con el Monte Submarino Las Gemelas y primera evidencia de conectividad con la Isla del Coco, Pacífico de Costa Rica. Revista de Biología Tropical, 68(S1), S320-S329. https://doi.org/10.15517/rbt.v68iS1.41202spa
dc.relation.references9. Chávez, E. J., Arauz, R., Hearn, A., Nalesso, E., & Steiner, T. (2020). Asociación de tiburones con el Monte Submarino Las Gemelas y primera evidencia de conectividad con la Isla del Coco, Pacífico de Costa Rica. Revista de Biología Tropical, 68(S1), S320-S329. https://doi.org/10.15517/rbt.v68iS1.41202spa
dc.relation.references10. Chavez, F. P., Bertrand, A., Guevara-Carrasco, R., Soler, P., & Csirke, J. (2008). The northern Humboldt Current System: Brief history, present status and a view towards the future. Progress in Oceanography, 79(2–4), 95–105. https://doi.org/10.1016/j.pocean.2008.10.012spa
dc.relation.references11. Cobos, M. E., Peterson, A. T., Barve, N., & Osorio-Olvera, L. (2019). kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7, e6281. https://doi.org/10.7717/peerj.6281spa
dc.relation.references12. Coiraton, C., & Amezcua, F. (2020). In utero elemental tags in vertebrae of the scalloped hammerhead shark Sphyrna lewini reveal migration patterns of pregnant females. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-58735-8spa
dc.relation.references13. Comisión para la Cooperación Ambiental (2017). Plan de acción de América del Norte para un comercio sustentable de especies de tiburón. http://www3.cec.org/islandora/es/item/11714-sustainable-trade-in-sharks-action-plan-north-america-es.pdf [Consultado el 18 de octubre de 2019].spa
dc.relation.references14. Dixson, D. L., Jennings, A. R., Atema, J., & Munday, P. L. (2015). Odor tracking in sharks is reduced under future ocean acidification conditions. Global Change Biology, 21, 1454–1462. https://doi.org/10.1111/gcb.12678spa
dc.relation.references15. Encina, F. M. M., González, J. M., & Paredes, J. C. (2020). Distribución actual y potencial de Dendroctonus mexicanus Hopkins bajo dos escenarios de cambio climático. Madera y bosques, 26(2), 2. https://doi.org/10.21829/myb.2020.2622002spa
dc.relation.references16. England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., ... & Santoso, A. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature climate change, 4(3), 222-227. https://doi.org/10.1038/nclimate2106spa
dc.relation.references17. Estupiñán-Montaño, C., Galván-Magaña, F., Tamburín, E., Sánchez-González, A., Villalobos-Ramírez, D. J., Murillo-Bohórquez, N., ... & Estupiñán-Ortiz, J. F. (2017). Trophic inference in two sympatric sharks, Sphyrna lewini and Carcharhinus falciformis (elasmobranchii: carcharhiniformes), based on stable isotope analysis at Malpelo Island, Colombia. Acta Ichthyologica et Piscatoria, 47(4), 357-364. https://doi.org/10.3750/AIEP/02177spa
dc.relation.references18. Fangue, N. A., & Bennett, W. A. (2003). Thermal tolerance responses of laboratory-acclimated and seasonally acclimatized Atlantic stingray, Dasyatis sabina. Copeia, 2003(2), 315-325. https://doi.org/10.1643/0045-8511(2003)003[0315:TTROLA]2.0.CO;2spa
dc.relation.references19. Flint, J., Flint, M., Limpus, C. J., & Mills, P. C. (2017). The impact of environmental factors on marine turtle stranding rates. PloS one, 12(8), e0182548. https://doi.org/10.1371/journal.pone.0182548spa
dc.relation.references20. Flores-Aqueveque, V., Rojas, M., Aguirre, C., Arias, P.A., González, C. (2020). South Pacific Subtropical High from the late Holocene to the end of the 21st century: insights from climate proxies and general circulation models. Clim Past 16(1):79–99. https://doi.org/10.5194/cp-16-79-2020spa
dc.relation.references21. Flores-Martínez, I. A., Torres-Rojas, Y. E., Galván-Magaña, F., & Ramos-Miranda, J. (2017). Diet comparison between silky sharks (Carcharhinus falciformis) and scalloped hammerhead sharks (Sphyrna lewini) off the south-west coast of Mexico. Journal of the Marine Biological Association of the United Kingdom, 97(2), 337–345. https://doi.org/10.1017/S0025315416000424spa
dc.relation.references22. Francis, M. P. (2013). Temporal and spatial patterns of habitat use by juveniles of a small coastal shark (Mustelus lenticulatus) in an estuarine nursery. PloS one, 8(2), e57021. https://doi.org/10.1371/journal.pone.0057021spa
dc.relation.references23. Francis, M. P. (2016). Distribution, habitat and movement of juvenile smooth hammerhead sharks (Sphyrna zygaena) in northern New Zealand. New Zealand Journal of Marine and Freshwater Research, 50(4), 506–525. https://doi.org/10.1080/00288330.2016.1171244spa
dc.relation.references24. Fosu, B., He, J., & Liguori, G. (2020). Equatorial Pacific Warming Attenuated by SST Warming Patterns in the Tropical Atlantic and Indian Oceans. Geophysical Research Letters, 47(18), 0–2. https://doi.org/10.1029/2020GL088231spa
dc.relation.references25. Gallagher, A. J., & Klimley, A. P. (2018). The biology and conservation status of the large hammerhead shark complex: the great, scalloped, and smooth hammerheads. Reviews in Fish Biology and Fisheries, 28(4), 777–794. https://doi.org/10.1007/s11160-018-9530-5spa
dc.relation.references26. Gattuso, J. P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Pörtner, H. O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., … Turley, C. (2015). Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349(6243). https://doi.org/10.1126/science.aac4722spa
dc.relation.references27. Gonzalez-Pestana, A. (2018). Habitat Suitability of Juvenile Smooth Hammerhead Shark (Sphyrna zyagena) off northern Peru [master’s thesis]. James Cook University, Australia. https://doi.org/10.13140/RG.2.2.21919.00167spa
dc.relation.references28. Guillera‐Arroita, G., Lahoz‐Monfort, J.J., Elith, J. (2014). Maxent is not a presence –absence method: a comment on Thibaud et al. Methods in Ecology and Evolution, 5(11), 1192-1197. https://doi.org/10.1111/2041-210X.12252spa
dc.relation.references29. Hearn, A., Ketchum, J., Klimley, A. P., Espinoza, E., & Peñaherrera, C. (2010). Hotspots within hotspots? Hammerhead shark movements around Wolf Island, Galapagos Marine Reserve. Marine Biology, 157(9), 1899–1915. https://doi.org/10.1007/s00227-010-1460-2spa
dc.relation.references30. Hoffmayer, E. R., Franks, J. S., Driggers, W. B., & Howey, P. W. (2013). Diel vertical movements of a scalloped hammerhead, Sphyrna lewini, in the northern Gulf of Mexico. Bulletin of Marine Science, 89(2), 551–557. https://doi.org/10.5343/bms.2012.1048spa
dc.relation.references31. Ibarra-Montoya, J. L., Rangel-Peraza, G., González-Farias, F. A., De Anda, J., Martínez-Meyer, E., & Macias-Cuellar, H. (2012). Uso del modelado de nicho ecológico como una herramienta para predecir la distribución potencial de Microcystis sp (cianobacteria) en la Presa Hidroeléctrica de Aguamilpa, Nayarit, México. Ambiente & Água-An Interdisciplinary Journal of Applied Science, 7(1), 218-234. https://doi.org/10.4136/ambi-agua.607spa
dc.relation.references32. IDEAM-UNAL. (2018). La variabilidad y el cambio climáticos en Colombia. Bogota, D.C., 28. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023778/variabilidad.pdf [Consultado el 23 de agosto de 2019].spa
dc.relation.references33. IPCC, 2019. Calentamiento global de 1,5 °C. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/09/IPCC-Special-Report-1.5-SPM_es.pdf [Consultado el 8 de agosto de 2020].spa
dc.relation.references34. Kao, H. Y., & Lagerloef, G. S. (2015). Salinity fronts in the tropical Pacific Ocean. Journal of Geophysical Research: Oceans, 120(2), 1096-1106. https://doi.org/10.1002/2014JC010114spa
dc.relation.references35. Ketchum, J. T., Hearn, A., Klimley, A. P., Espinoza, E., Peñaherrera, C., & Largier, J. L. (2014). Seasonal changes in movements and habitat preferences of the scalloped hammerhead shark (Sphyrna lewini) while refuging near an oceanic island. Marine Biology, 161(4), 755–767. https://doi.org/10.1007/s00227-013-2375-5spa
dc.relation.references36. Ko, G. W., Dineshram, R., Campanati, C., Chan, V. B., Havenhand, J., & Thiyagarajan, V. (2014). Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the Pacific oyster. Environmental Science & Technology, 48(17), 10079-10088. https://doi.org/10.1021/es501611uspa
dc.relation.references37. Leach, K., Montgomery, W. I., & Reid, N. (2016). Modelling the influence of biotic factors on species distribution patterns. Ecological Modelling, 337, 96-106. https://doi.org/10.1016/j.ecolmodel.2016.06.008spa
dc.relation.references38. Lezama-Ochoa, N., Murua, H., Hall, M., Román, M., Ruiz, J., Vogel, N., ... & Sancristobal, I. (2017). Biodiversity and habitat characteristics of the bycatch assemblages in fish aggregating devices (FADs) and school sets in the Eastern Pacific Ocean. Frontiers in Marine Science, 4, 265. https://doi.org/10.3389/fmars.2017.00265.spa
dc.relation.references39. Luna, P. D. M., & Cota, S. E. L. (2013). Cambio climático y amniotas marinos: evidencias, hipótesis e incertidumbre. Interciencia, 38(10), 712-718.spa
dc.relation.references40. Marie, A. D., Miller, C., Cawich, C., Piovano, S., & Rico, C. (2017). Fisheries-independent surveys identify critical habitats for young scalloped hammerhead sharks (Sphyrna lewini) in the Rewa Delta, Fiji. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-17152-0spa
dc.relation.references41. Martin, C. S., Vaz, S., Ellis, J. R., Lauria, V., Coppin, F., & Carpentier, A. (2012). Modelled distributions of ten demersal elasmobranchs of the eastern English Channel in relation to the environment. Journal of Experimental Marine Biology and Ecology, 418–419, 91–103. https://doi.org/10.1016/j.jembe.2012.03.010spa
dc.relation.references42. Mateo, R. G., Felicísimo, Á. M., & Muñoz, J. (2012). Modelos de distribución de especies y su potencialidad como recurso educativo interdisciplinar. Reduca (Biologia), 5(1).spa
dc.relation.references43. McGregor, S., Timmermann, A., Stuecker, M. F., England, M. H., Merrifield, M., Jin, F. F., & Chikamoto, Y. (2014). Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4(10), 888-892. https://doi.org/10.1038/nclimate2330spa
dc.relation.references44. Nalesso, E., Hearn, A., Sosa-Nishizaki, O., Steiner, T., Antoniou, A., Reid, A., ... & Ketchum, J. T. (2019). Movements of scalloped hammerhead sharks (Sphyrna lewini) at Cocos Island, Costa Rica and between oceanic islands in the Eastern Tropical Pacific. PloS one, 14(3). https://doi.org/10.1371/journal.pone.0213741spa
dc.relation.references45. Navarro-Monterroza, E., Arias, P. A., & Vieira, S. C. (2019). El Niño-Oscilación del Sur, fase Modoki, y sus efectos en la variabilidad espacio-temporal de la precipitación en Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 120. https://doi.org/10.18257/raccefyn.704spa
dc.relation.references46. Oyarzún, D., & Brierley, C. M. (2019). The future of coastal upwelling in the Humboldt current from model projections. Climate Dynamics, 52(1–2), 599–615. https://doi.org/10.1007/s00382-018-4158-7spa
dc.relation.references47. Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J., ... & Peterson, A. T. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological modelling, 263, 10-18. https://doi.org/10.1016/j.ecolmodel.2013.04.011spa
dc.relation.references48. Papastamatiou, Y. P., Watanabe, Y. Y., Bradley, D., Dee, L. E., Weng, K., Lowe, C. G., & Caselle, J. E. (2015). Drivers of daily routines in an ectothermic marine predator: Hunt warm, rest warmer? PLoS ONE, 10(6), 1–16. https://doi.org/10.1371/journal.pone.0127807spa
dc.relation.references49. Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008spa
dc.relation.references50. Pistevos, J. C., Nagelkerken, I., Rossi, T., Olmos, M., & Connell, S. D. (2015). Ocean acidification and global warming impair shark hunting behaviour and growth. Scientific Reports, 5(1), 1-10. https://doi.org/10.1038/srep16293spa
dc.relation.references51. Pliscoff, P., & Fuentes-Castillo, T. (2011). Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles. Revista de Geografía Norte Grande, (48), 61-79. http://dx.doi.org/10.4067/S0718-34022011000100005spa
dc.relation.references52. Pörtner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315(5808), 95-97. https://doi.org/10.1126/science.1135471spa
dc.relation.references53. Poulakis, G. R., Stevens, P. W., Timmers, A. A., Wiley, T. R., & Simpfendorfer, C. A. (2011). Abiotic affinities and spatiotemporal distribution of the endangered smalltooth sawfish, Pristis pectinata, in a south-western Florida nursery. Marine and Freshwater Research, 62(10), 1165-1177. https://doi.org/10.1071/MF11008spa
dc.relation.references54. Rivas, M. L., Spínola, M., Arrieta, H., & Faife-Cabrera, M. (2018). Effect of extreme climatic events resulting in prolonged precipitation on the reproductive output of sea turtles. Animal Conservation, 21(5), 387–395. https://doi.org/10.1111/acv.12404spa
dc.relation.references55. Roberts, C. M., O’Leary, B. C., McCauley, D. J., Cury, P. M., Duarte, C. M., Lubchenco, J., ... & Worm, B. (2017). Marine reserves can mitigate and promote adaptation to climate change. Proceedings of the National Academy of Sciences, 114(24), 6167-6175. https://doi.org/10.1073/pnas.1701262114spa
dc.relation.references56. Rodríguez, E., & Giraldo, A. (2011). Características oceanográficas en isla Malpelo y su relación con la cuenca oceánica del Pacífico Colombiano. Boletín de Investigaciones Marinas y Costeras, (40), 19-32. https://doi.org/10.25268/bimc.invemar.2011.40.0.126spa
dc.relation.references57. Rosa, R., Baptista, M., Lopes, V. M., Pegado, M. R., Ricardo Paula, J., Trübenbach, K., ... & Repolho, T. (2014). Early-life exposure to climate change impairs tropical shark survival. Proceedings of the Royal Society B: Biological Sciences, 281(1793), 20141738. https://doi.org/10.1098/rspb.2014.1738spa
dc.relation.references58. Salinas de León, P., Hoyos-Padilla, E. M., & Pochet, F. (2017). First observation on the mating behaviour of the endangered scalloped hammerhead shark Sphyrna lewini in the Tropical Eastern Pacific. Environmental Biology of Fishes, 100(12), 1603–1608. https://doi.org/10.1007/s10641-017-0668-0spa
dc.relation.references59. Salomón-Aguilar, C. A., Villavicencio-Garayzar, C. J., & Reyes-Bonilla, H. (2009). Zonas y temporadas de reproducción y crianza de tiburones en el Golfo de California: Estrategia para su conservación y manejo pesquero. Ciencias Marinas, 35(4), 369–388.spa
dc.relation.references60. Schlaff, A. M., Heupel, M. R., & Simpfendorfer, C. A. (2014). Influence of environmental factors on shark and ray movement, behaviour and habitat use: a review. Reviews in Fish Biology and Fisheries, 24(4). https://doi.org/10.1007/s11160-014-9364-8spa
dc.relation.references61. Srivastava, V., Griess, V. C., & Padalia, H. (2018). Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecological Modelling, 385, 35-44. https://doi.org/10.1016/j.ecolmodel.2018.07.001spa
dc.relation.references62. Soberón, J., Osorio-Olvera, L., & Peterson, T. (2017). Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Revista Mexicana de Biodiversidad, 88(2), 437-441. https://doi.org/10.1016/j.rmb.2017.03.011spa
dc.relation.references63. Soler, G. A., Bessudo, S., & Guzmán, A. (2013). Long term monitoring of pelagic fishes at Malpelo Island, Colombia. Latin American Journal of Conservation, 3(2), 28-37.spa
dc.relation.references64. Speed, C. W., Meekan, M. G., Field, I. C., McMahon, C. R., & Bradshaw, C. J. (2012). Heat-seeking sharks: support for behavioural thermoregulation in reef sharks. Marine Ecology Progress Series, 463, 231-244. https://doi.org/10.3354/meps09864spa
dc.relation.references65. Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F., & De Clerck, O. (2012). Bio‐ORACLE: a global environmental dataset for marine species distribution modelling. Global ecology and biogeography, 21(2), 272-281. https://doi.org/10.1111/j.1466-8238.2011.00656.xspa
dc.relation.references66. Varela, S., Mateo, R. G., García-Valdés, R., & Fernández-González, F. (2014). Macroecología y ecoinformática: sesgos, errores y predicciones en el modelado de distribuciones. Revista Ecosistemas, 23(1), 46-53. https://doi.org/10.7818/ECOS.2014.23-1-07spa
dc.relation.references67. Vasquez, M. C., & Tomanek, L. (2019). Sirtuins as regulators of the cellular stress response and metabolism in marine ectotherms. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology, 236, 110528. https://doi.org/10.1016/j.cbpa.2019.110528spa
dc.relation.references68. Wang, D., Gouhier, T. C., Menge, B. A., & Ganguly, A. R. (2015). Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518(7539), 390-394. https://doi.org/10.1038/nature14235spa
dc.relation.references69. Xiu, P., Chai, F., Curchitser, E. N., & Castruccio, F. S. (2018). Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. Scientific Reports, October 2017, 1–9. https://doi.org/10.1038/s41598-018-21247-7spa
dc.relation.references70. Yates, P. M., Heupel, M. R., Tobin, A. J., & Simpfendorfer, C. A. (2015). Ecological drivers of shark distributions along a tropical coastline. PLoS ONE, 10(4), 1–18. https://doi.org/10.1371/journal.pone.0121346spa
dc.relation.references71. Zanella, I., López-Garro, A., McComb-Kobza, D. M., Golfín-Duarte, G., Pérez-Montero, M., & Morales, J. (2016). First record of young-of-the-year Scalloped hammerhead shark, Sphyrna lewini (Carcharhiniformes: Sphyrnidae) from Isla del Coco National Park, Costa Rica. Revista de Biologia Tropical, 64(1), S201–S204. https://doi.org/10.15517/rbt.v64i1.23448spa
dc.relation.references72. Zheng, X. T., Xie, S. P., Lv, L. H., & Zhou, Z. Q. (2016). Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. Journal of Climate, 29(20), 7265–7279. https://doi.org/10.1175/JCLI-D-16-0039.1spa
dc.subject.proposalKUENMspa
dc.subject.proposalModelación de nicho ecológicospa
dc.subject.proposalSurgenciasspa
dc.subject.proposalBio-ORACLEspa
dc.subject.proposalTiburón martillospa
dc.subject.proposalCambio climáticospa
dc.publisher.grantorUniversidad Militar Nueva Granadaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f*
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.identifier.instnameinstname:Universidad Militar Nueva Granadaspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Militar Nueva Granadaspa
dc.identifier.repourlrepourl:https://repository.unimilitar.edu.cospa
dc.rights.localAcceso abiertospa
dc.coverage.sedeCampus UMNGspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/