Mostrar el registro sencillo del ítem

dc.contributor.advisorPedraza Nájar, Ximena Lucía
dc.contributor.authorRavagli Castillo, Andrea Carolina
dc.date.accessioned2021-10-01T19:45:38Z
dc.date.available2021-10-01T19:45:38Z
dc.date.issued2021-05-20
dc.identifier.urihttp://hdl.handle.net/10654/38939
dc.description.abstractEl crecimiento poblacional acelerado tiene efectos sobre el uso del suelo, ya que una mayor densidad poblacional genera una mayor demanda de productos alimenticios lo cual induce a que la actividad económica agropecuaria, que en Colombia es una de las principales, ocupe más territorios. La expansión del uso del suelo para fines de ganadería es cada vez más predominante debido al alto consumo de proteína animal por parte de la población. El impacto ambiental que implica la ganadería comprende la compactación del suelo, destrucción de bosques nativos por deforestación, pérdida de la biodiversidad de fauna y flora, alteración de hábitats naturales, y mayor emisión de gases de efecto invernadero, entre otros. Por lo anterior, se hace imperante hallar alternativas de fuente de proteína animal que aminoren los impactos ambientales producto de la ganadería y para contribuir a la seguridad alimentaria ya que la producción de alimentos a futuro presenta importantes retos para atenuar el hambre crónica. De esta forma se presenta a los insectos comestibles como alternativa de fuente de proteína animal realizando una revisión bibliográfica que permita dilucidar los tipos de insectos que son aptos para consumo, las prácticas que se deben implementar para su recolección y cría, la sostenibilidad en la cría de insectos frente a la producción ganadera convencional, eficiencia de conversión, valor nutricional, seguridad alimentaria, riesgos y legislación. El presente artículo destaca la implementación de cultivos de producción de insectos comestibles como una alternativa prometedora por sus beneficios ambientales y aportes nutricionales.spa
dc.format.mimetypeapplicaction/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleProspección de los Insectos Comestibles como fuente de proteína animal para el consumo humanospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.lembINSECTOS COMO ALIMENTOspa
dc.subject.lembPROTEINASspa
dc.subject.lembIMPACTO AMBIENTALspa
dc.subject.lembSEGURIDAD ALIMENTICIAspa
dc.type.localTesis/Trabajo de grado - Monografía - Especializaciónspa
dc.description.abstractenglishAccelerated population growth has effects on land use, since a higher population density generates a greater demand for food products, which induces agricultural economic activity, that in Colombia is one of the most important, to occupy more territories. The expansion of land use for livestock purposes is increasingly predominant due to the high consumption of animal protein by the population. The environmental impact that livestock farming implies, includes soil compaction, destruction of native forests due to deforestation, loss of fauna and flora biodiversity, alteration of natural habitats, and higher greenhouse gas emissions, among others. Therefore, it is imperative to find alternative sources of animal protein that reduce the environmental impacts caused by livestock and to contribute to food security since future food production presents important challenges to alleviate chronic hunger. In this way, edible insects are presented as an alternative source of animal protein, carrying out a bibliographic review that allows to elucidate the types of insects that are suitable for consumption, the practices that must be implemented for their collection and breeding, sustainability in breeding of insects versus conventional livestock production, conversion efficiency, nutritional value, food safety, risks and legislation. This article highlights the implementation of crops for the production of edible insects as a promising alternative due to its environmental benefits and nutritional contributions.spa
dc.title.translatedProspect for Edible Insects as a source of animal protein for human consumptionspa
dc.subject.keywordsEdible insectsspa
dc.subject.keywordsAnimal proteinspa
dc.subject.keywordsNutritional valuespa
dc.subject.keywordsEntomophagyspa
dc.subject.keywordsEnvironmental impactspa
dc.subject.keywordsFood safetyspa
dc.publisher.programEspecialización en Planeación Ambiental y Manejo Integral de los Recursos Naturalesspa
dc.creator.degreenameEspecialista en Planeación Ambiental y Manejo Integral de los Recursos Naturalesspa
dc.description.degreelevelEspecializaciónspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.relation.referencesBelluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., & Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: a critical review. Comprehensive Reviews in Food Science and Food Safety, 12(3), 296-313.spa
dc.relation.referencesBerg, J., Wendin, K., Langton, M., Josell, Å, & Davidsson, F. (2017). State Of The Art report-: insects as food and feed. Annals of Experimental Biology, 5(2), 1-9.spa
dc.relation.referencesBessa, L. W., Pieterse, E., Sigge, G., & Hoffman, L. C. (2020). Insects as human food; from farm to fork. Journal of the Science of Food and Agriculture, 100(14), 5017-5022.spa
dc.relation.referencesCerritos, R. (2009). Insects as food: an ecological, social and economical approach. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4(27), 1-10.spa
dc.relation.referencesCollavo, A., Glew, R. H., Huang, Y., Chuang, L., Bosse, R., & Paoletti, M. G. (2005). House cricket small-scale farming. Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails, 27, 515-540.spa
dc.relation.referencesDANE. Departamento Administrativo Nacional de Estadística. (2016). Tercer Censo Nacional Agropecuario. La mayor operación estadística del campo colombiano en los últimos 45 años. Tomo 2, Resultados. https://www.dane.gov.co/files/images/foros/foro-de-entrega-de-resultados-y-cierre-3-censo-nacional-agropecuario/CNATomo2-Resultados.pdfspa
dc.relation.referencesde Castro, Ruann Janser Soares, Ohara, A., dos Santos Aguilar, Jessika Gonçalves, & Domingues, M. A. F. (2018). Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in Food Science & Technology, 76, 82-89.spa
dc.relation.referencesDeroy, O., Reade, B., & Spence, C. (2015). The insectivore’s dilemma, and how to take the West out of it. Food Quality and Preference, 44, 44-55.spa
dc.relation.referencesDobermann, D., Swift, J. A., & Field, L. M. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293-308.spa
dc.relation.referencesEdijala, J. K., Egbogbo, O., & Anigboro, A. A. (2009). Proximate composition and cholesterol concentrations of Rhynchophorus phoenicis and Oryctes monoceros larvae subjected to different heat treatments. African Journal of Biotechnology, 8(10)spa
dc.relation.referencesEkop, E. A., Udoh, A. I., & Akpan, P. E. (2010). Proximate and anti-nutrient composition of four edible insects in Akwa Ibom State, Nigeria. World J.Appl.Sci.Technol, 2(2), 224-231.spa
dc.relation.referencesErickson, M. C., Islam, M., Sheppard, C., Liao, J., & Doyle, M. P. (2004). Reduction of Escherichia coli O157: H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. Journal of Food Protection, 67(4), 685-690.spa
dc.relation.referencesFAO. Food and Agriculture Organization of the United Nations. (2012). Technical Consultation Meeting 23-25 January 2012, FAO, Rome, Italy. Assessing the Potential of Insects as Food and Feed in assuring Food Security. Summary Report. Recuperado el 11 de mayo 2021, de http://www.fao.org/3/an233e/an233e00.pdfspa
dc.relation.referencesFAO. Food and Agriculture Organization of the United Nations. (2013). Food wastage footprint: impact on natural resources. Summary Report. Recuperado el 4 de mayo 2021, de http://www.fao.org/3/i3347e/i3347e.pdfspa
dc.relation.referencesFernandez‐Cassi, X., Supeanu, A., Jansson, A., Boqvist, S., & Vagsholm, I. (2018). Novel foods: a risk profile for the house cricket (Acheta domesticus). EFSA Journal, 16, e16082spa
dc.relation.referencesFombong, F. T., Van Der Borght, M., & Vanden Broeck, J. (2017). Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect Ruspolia differens. Insects, 8(3), 102.spa
dc.relation.referencesGahukar, R. T. (2016). Edible insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. Insects as sustainable food ingredients (pp. 85-111). Elsevier.spa
dc.relation.referencesGere, A., Zemel, R., Radványi, D., & Moskowitz, H. (2017). Insect based foods a nutritional point of view. Nutrition and Food Science International Journal, 4(3)spa
dc.relation.referencesGrabowski, N. T., & Klein, G. (2017). Microbiology of cooked and dried edible Mediterranean field crickets (Gryllus bimaculatus) and superworms (Zophobas atratus) submitted to four different heating treatments. Food Science and Technology International, 23(1), 17-23.spa
dc.relation.referencesGravel, A., & Doyen, A. (2020). The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innovative Food Science & Emerging Technologies, 59, 102272.spa
dc.relation.referencesHalloran, A., Hanboonsong, Y., Roos, N., & Bruun, S. (2017). Life cycle assessment of cricket farming in north-eastern Thailand. Journal of Cleaner Production, 156, 83-94.spa
dc.relation.referencesHalloran, A., Roos, N., Eilenberg, J., Cerutti, A., & Bruun, S. (2016). Life cycle assessment of edible insects for food protein: a review. Agronomy for Sustainable Development, 36(4), 1-13.spa
dc.relation.referencesHartmann, C., Shi, J., Giusto, A., & Siegrist, M. (2015). The psychology of eating insects: A cross-cultural comparison between Germany and China. Food Quality and Preference, 44, 148-156.spa
dc.relation.referencesHerrero, M., Wirsenius, S., Henderson, B., Rigolot, C., Thornton, P., Havlík, P., De Boer, I., & Gerber, P. J. (2015). Livestock and the environment: what have we learned in the past decade? Annual Review of Environment and Resources, 40, 177-202.spa
dc.relation.referencesHoekstra, A. Y. (2012). The hidden water resource use behind meat and dairy. Animal Frontiers, 2(2), 3-8.spa
dc.relation.referencesHouse, J. (2016). Consumer acceptance of insect-based foods in the Netherlands: Academic and commercial implications. Appetite, 107, 47-58.spa
dc.relation.referencesJongema, Y. (2017). List of edible insects of the World. Wageningen University & Research. Recuperado el 8 de mayo de 2021, de https://www.wur.nl/upload_mm/8/a/6/0fdfc700-3929-4a74-8b69-f02fd35a1696_Worldwide%20list%20of%20edible%20insects%202017.pdfspa
dc.relation.referencesKim, T., Yong, H. I., Kim, Y., Kim, H., & Choi, Y. (2019). Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food Science of Animal Resources, 39(4), 521.spa
dc.relation.referencesKinyuru, J. N., Kenji, G. M., Njoroge, S. M., & Ayieko, M. (2010). Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food and Bioprocess Technology, 3(5), 778-782.spa
dc.relation.referencesKouřimská, L., & Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22-26.spa
dc.relation.referencesLewis, A. (2015). Review of US state-level entomophagy regulation 2015. Recuperado el 7 de mayo de 2021, de http://pitt.afdo.org/uploads/1/5/9/4/15948626/ffp_lewis_adam_entomophagy_regulation_ppt_final_afdo_v2.pdfspa
dc.relation.referencesLiu, Q., Tomberlin, J. K., Brady, J. A., Sanford, M. R., & Yu, Z. (2008). Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environmental Entomology, 37(6), 1525-1530.spa
dc.relation.referencesLundy, M. E., & Parrella, M. P. (2015). Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PloS One, 10(4), e0118785.spa
dc.relation.referencesMadibela, O. R., Seitiso, T. K., Thema, T. F., & Letso, M. (2007). Effect of traditional processing methods on chemical composition and in vitro true dry matter digestibility of the Mophane worm (Imbrasia belina). Journal of Arid Environments, 68(3), 492-500.spa
dc.relation.referencesMADR-UPRA. Ministerio de Agricultura y Desarrollo Rural – Unidad de Planificación Rural Agropecuaria. (2018). Identificación General de la Frontera Agrícola en Colombia, Escala 1:100.000 https://www.minagricultura.gov.co/Normatividad/Projects_Documents/IDENTIFICACION%20GENERAL%20DE%20LA%20FRONTERA%20.pdfspa
dc.relation.referencesManurung, R., Supriatna, A., Esyanthi, R. R., & Putra, R. E. (2016). Bioconversion of rice straw waste by black soldier fly larvae (Hermetia illucens L.): optimal feed rate for biomass production. J Entomol Zool Stud, 4(4), 1036-1041.spa
dc.relation.referencesMarshall, D. L., Dickson, J. S., & Nguyen, N. H. (2016). Ensuring food safety in insect based foods: Mitigating microbiological and other foodborne hazards. Insects as sustainable food ingredients (pp. 223-253). Elsevier.spa
dc.relation.referencesMekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577-1600.spa
dc.relation.referencesMelis, R., Braca, A., Mulas, G., Sanna, R., Spada, S., Serra, G., Fadda, M. L., Roggio, T., Uzzau, S., & Anedda, R. (2018). Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innovative Food Science & Emerging Technologies, 48, 138-149.spa
dc.relation.referencesMinisterio de consumo. (2020). Situación de los insectos en la alimentación humana. Agencia española de seguridad alimentaria y nutrición. Recuperado el 7 de mayo de 2021, de https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/gestion_riesgos/INSECTOS_ALIMENTACION_.pdfspa
dc.relation.referencesMurefu, T. R., Macheka, L., Musundire, R., & Manditsera, F. A. (2019). Safety of wild harvested and reared edible insects: A review. Food Control, 101, 209-224.spa
dc.relation.referencesMwangi, M. N., Oonincx, D. G., Stouten, T., Veenenbos, M., Melse-Boonstra, A., Dicke, M., & Van Loon, J. J. (2018). Insects as sources of iron and zinc in human nutrition. Nutrition Research Reviews, 31(2), 248-255.spa
dc.relation.referencesNowak, V., Persijn, D., Rittenschober, D., & Charrondiere, U. R. (2016). Review of food composition data for edible insects. Food Chemistry, 193, 39-46.spa
dc.relation.referencesOonincx, D. G., & De Boer, I. J. (2012). Environmental impact of the production of mealworms as a protein source for humans–a life cycle assessment. PloS One, 7(12), e51145.spa
dc.relation.referencesOonincx, D., Van Huis, A., & Van Loon, J. (2015). Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure. Journal of Insects as Food and Feed, 1(2), 131-139.spa
dc.relation.referencesPalmer, L. (2016). Edible insects as a source of food allergens [Trabajo de Fin de Grado, Universidad de Nebraska]. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1076&context=foodscidissspa
dc.relation.referencesPatel, S., Suleria, H. A. R., & Rauf, A. (2019). Edible insects as innovative foods: Nutritional and functional assessments. Trends in Food Science & Technology, 86, 352-359.spa
dc.relation.referencesPremalatha, M., Abbasi, T., Abbasi, T., & Abbasi, S. A. (2011). Energy-efficient food production to reduce global warming and ecodegradation: The use of edible insects. Renewable and Sustainable Energy Reviews, 15(9), 4357-4360.spa
dc.relation.referencesRestrepo Franco, L. J. (2020). Identificación de la dinámica de disminución del ecosistema boscoso a causa de la expansión de actividades antrópicas, durante los años 2015-2020, en la cuenca del río Santa Rita, municipio de Andes, Antioquia. Tecnológico de Antioquia – Institución Universitaria.spa
dc.relation.referencesRumpold, B. A., & Schlüter, O. K. (2013a). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802-823.spa
dc.relation.referencesRumpold, B. A., & Schlüter, O. K. (2013b). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11.spa
dc.relation.referencesShah, R. M., Azhar, F., Shad, S. A., Walker, W. B., Azeem, M., & Binyameen, M. (2016). Effects of different animal manures on attraction and reproductive behaviors of common house fly, Musca domestica L. Parasitology Research, 115(9), 3585-3598.spa
dc.relation.referencesShantibala, T., Lokeshwari, R. K., & Debaraj, H. (2014). Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur, India. Journal of Insect Science, 14(1)spa
dc.relation.referencesSrinroch, C., Srisomsap, C., Chokchaichamnankit, D., Punyarit, P., & Phiriyangkul, P. (2015). Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chemistry, 184, 160-166.spa
dc.relation.referencesSurendra, K. C., Olivier, R., Tomberlin, J. K., Jha, R., & Khanal, S. K. (2016). Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renewable Energy, 98, 197-202.spa
dc.relation.referencesTang, C., Yang, D., Liao, H., Sun, H., Liu, C., Wei, L., & Li, F. (2019). Edible insects as a food source: a review. Food Production, Processing and Nutrition, 1(1), 1-13.spa
dc.relation.referencesTesta, M., Stillo, M., Maffei, G., Andriolo, V., Gardois, P., & Zotti, C. M. (2017). Ugly but tasty: A systematic review of possible human and animal health risks related to entomophagy. Critical Reviews in Food Science and Nutrition, 57(17), 3747-3759.spa
dc.relation.referencesVan Broekhoven, S., Bastiaan-Net, S., de Jong, N. W., & Wichers, H. J. (2016). Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food Chemistry, 196, 1075-1083.spa
dc.relation.referencesVan Huis, A., & Oonincx, D. G. (2017). The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37(5), 1-14.spa
dc.relation.referencesVan Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations.spa
dc.subject.proposalInsectos comestiblesspa
dc.subject.proposalProteína animalspa
dc.subject.proposalValor nutricionalspa
dc.subject.proposalEntomofagiaspa
dc.subject.proposalImpacto ambientalspa
dc.subject.proposalSeguridad alimentariaspa
dc.publisher.grantorUniversidad Militar Nueva Granadaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f*
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.identifier.instnameinstname:Universidad Militar Nueva Granadaspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Militar Nueva Granadaspa
dc.identifier.repourlrepourl:https://repository.unimilitar.edu.cospa
dc.rights.localAcceso abiertospa
dc.coverage.sedeCalle 100spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/