dc.contributor.advisor | Avilés Sánchez, Oscar Fernando | |
dc.contributor.advisor | Mauledoux Monroy, Mauricio Felipe | |
dc.contributor.author | Muñoz García, Cristian Hernán | |
dc.date.accessioned | 2021-12-24T04:51:23Z | |
dc.date.available | 2021-12-24T04:51:23Z | |
dc.date.issued | 2021-07-29 | |
dc.identifier.uri | http://hdl.handle.net/10654/39749 | |
dc.description.abstract | Este proyecto presenta la implementación de controladores avanzados sobre el robot Manipulador Móvil UMNG, el cual cuenta con una base móvil de 6 ruedas y un brazo manipulador de 3 Grados de Libertad (GDL), sobre el cual se han realizado trabajos previos en diseño e implementación en tiempo real de un sistema para su teleoperación [1]; y de diseño, simulación y validación de controladores usando metodología de Software-In-The-Loop (SIL) [2]. Como continuación, este proyecto planteó como objetivo principal diseñar, simular y validar técnicas avanzadas de control en manipuladores móviles, utilizando la metodología de Hardware-In-The-Loop (HIL), sobre modelos virtuales. Para esto se realizaron 4 etapas de desarrollo del mismo: 1) se analizaron los antecedentes a nivel local sobre el uso el Manipulador Móvil UMNG y se realizó un análisis del estado del arte de manipuladores móviles, brazos robóticos y plataformas móviles; 2) se modeló matemáticamente la cinemática y dinámica del Manipulador Móvil UMNG para determinar los requerimientos de los controladores a diseñar y realizar los modelos correspondientes al Manipulador Móvil UMNG; 3) después de obtener los modelos matemáticos representativos del manipulador móvil estudiado se procedió a diseñar y validar las técnicas de control para la trayectoria del efector final del brazo manipulador, y para la orientación y velocidad de las ruedas de la plataforma móvil, posteriormente realizando su validación mediante la
metodología de Software-In-The-Loop (SIL); 4) se realizó un análisis de los requisitos computacionales de cada uno de los controladores diseñados para, con otro análisis, determinar el sistema embebido en el cual se programarán para realizar finalmente una validación bajo la metodología de Hardware-In-The-Loop (HIL), realizando su respectiva comparación con los resultados obtenidos previamente bajo la metodología SIL. Cabe resaltar que tanto los trabajos previos realizados por Rubiano [1] y por Valencia [2] como este trabajo hacen parte del proyecto de investigación de alto impacto con código IMP-ING-2138 titulado: "Diseño y construcción de una plataforma robótica móvil para realizar el desminado en territorio colombiano". | spa |
dc.description.tableofcontents | 1. INTRODUCCIÓN
1.1. Resumen
1.2. Antecedentes
1.3. Planteamiento del Problema
1.4. Justificación del Proyecto
1.5. Estado del Arte
1.5.1. Diseño
1.5.2. Cinemática y Dinámica
1.5.3. Interacción con el espacio de trabajo
1.5.4. Robótica Cooperativa
1.5.5. Control
1.6. Marco Teórico
1.6.1. Robots Móviles
1.6.2. Tipos de Brazos Manipuladores
1.6.3. Cinemática y Dinámica de un Robot
1.6.4. Software-In-The-Loop (SIL)
1.6.5. Hardware-In-The-Loop (HIL)
1.7. Objetivos
1.7.1. Objetivo General
1.7.2. Objetivos Específicos
2. MODELOS MATEMÁTICOS DEL MANIPULADOR MÓVIL UMNG
2.1. Clasificación Estructural
2.2. Cinemática y Dinámica
2.2.1. Modelo Cinemático del Manipulador Móvil UMNG
2.3. Dinámica
2.3.1. Dinámica Inversa del Brazo Manipulador
2.3.2. Dinámica Directa del Brazo Manipulador
2.3.3. Dinámica Inversa de la Plataforma Móvil
3. CONTROL DEL MANIPULADOR MÓVIL UMNG - SIIL
3.1. Control del Brazo Manipulador
3.1.1. Controlador PD
3.1.2. Control PD+
3.1.3. Control por Par Calculado
3.1.4. Control por Modos Deslizantes
3.1.5. Comparación entre los Controladores Diseñados para el Control de la Trayectoria del Efector Final del Brazo Manipulador
3.2. Control de la Plataforma Móvil
3.2.1. Control de Orientación de las Ruedas Direccionables
3.2.2. Control de Velocidad de la Plataforma Móvil
4. VALIDACIÓN MEDIANTE LA METODOLOGÍA HIL
4.1. Selección Embebido
4.2. Control del Brazo Manipulador: PD+
4.3. Control del Brazo Manipulador: Par Calculado
4.4. Control del Brazo Manipulador: Modos Deslizantes
4.5. Comparación Control Trayectoria Efector Final del Brazo Manipulador - Metodología HIL
4.6. Orientación Plataforma Móvil: Servo Sistema Discreto
4.7. Orientación Plataforma Móvil: PI Generalizado Discreto
4.8. Orientación Plataforma Móvil: PID con Filtros Discretos
4.9. Comparación Control de Orientación Plataforma Móvil - Metodología HIL
4.10. Velocidad Plataforma Móvil: Servo Sistema Discreto
4.11. Velocidad Plataforma Móvil: PI Generalizado Discreto
4.12. Velocidad Plataforma Móvil: PID con Filtro Discreto
4.13. Comparación Control de Velocidad Plataforma Móvil - Metodología HIL
5. CONCLUSIONES | spa |
dc.format.mimetype | applicaction/pdf | spa |
dc.language.iso | spa | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Diseño, simulación y validación de técnicas avanzadas de control en manipuladores móviles usando la metodología de Hardwre-In-The-Loop (HIL) sobre modelos virtuales | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | * |
dc.subject.lemb | MANIPULADORES (MECANISMO) | spa |
dc.subject.lemb | SIMULADORES (TECNOLOGIA) | spa |
dc.subject.lemb | ROBOTS INDUSTRIALES | spa |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
dc.description.abstractenglish | This project presents the implementation of advanced controllers on the UMNG Manipulator Mobile robot, which has a 6-wheel mobile base and a 3-degrees of freedom (DOF) manipulator arm, on which previous works has been carried out in design and implementation in real time system for its teleoperation [1]; and design, simulation and validation of controllers using Software-In-The-Loop (SIL) methodology [2]. As a continuation, this project set as main objective the design, simulation and validation of advanced control techniques in mobile manipulators, using the Hardware-In-The-Loop (HIL) methodology, on virtual models. This project was structured in 4 steps of development: 1) the antecedents were analyzed locally on the use of the Mobile Manipulator UMNG and an analysis of the state of the art of mobile manipulators, robotic arms and mobile platforms was carried out; 2) the kinematics and dynamics of the UMNG Mobile Manipulator in order to determine the requirements of the controllers to be designed and finding the mathematical representations of the UMNG Mobile Manipulator; 3) after you get the models
representative mathematicians of the studied mobile manipulator, we proceeded to design and validate the control techniques for the trajectory of the manipulator arm end effector, and for the orientation and the speed of the wheels of the mobile platform, subsequently carrying out its validation by means of the Software-In-The-Loop (SIL) methodology; 4) an analysis of the computational requirements was performed of each of the controllers designed to, with another analysis, determine the embedded system in which will be programmed to finally carry out a validation under the Hardware-In-The-Loop (HIL), making its respective comparison with the results previously obtained under the SIL methodology. It should be noted that both the previous works carried out by Rubiano [1] and Valencia [2] and this work are part of the high impact research project with code IMP-ING-2138 entitled: "Design and construction of a mobile robotic platform to carry out demining in the colombian territory". | spa |
dc.title.translated | Design, simulation and validation of advanced control techniques on mobile manipulators using Hardware-In-The-Loop (HIL) methodology over virtual models | spa |
dc.subject.keywords | Mobile Manipulator UMNG | spa |
dc.subject.keywords | Advanced Control | spa |
dc.subject.keywords | Manipulator Arm | spa |
dc.subject.keywords | Mobile Platform | spa |
dc.subject.keywords | Software-In-The-Loop | spa |
dc.subject.keywords | Hardware-In-The-Loop | spa |
dc.subject.keywords | Discrete Generalized PI Control | spa |
dc.publisher.program | Maestría en Ingeniería Mecatrónica | spa |
dc.creator.degreename | Magíster en Ingeniería Mecatrónica | spa |
dc.description.degreelevel | Maestría | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.rights.creativecommons | Attribution-NonCommercial-NoDerivatives 4.0 International | spa |
dc.relation.references | [1] O. G. Rubiano Montaña, “Diseño e Implementación de un Sistema en Tiempo Real para Teleoperar un Manipulador Móvil,” 2018. | spa |
dc.relation.references | [2] A. J. Valencia Castañeda, “Diseño, Simulación y Verificación Experimental de Técnicas de Control Avanzado para el Control de Manipuladores Móviles,” 2017. | spa |
dc.relation.references | [3] W. Sun and J. Xia, “Adaptive Control for Mobile Manipulators with Affine Constraints,” pp. 3–6, 2016. | spa |
dc.relation.references | [4] A. Valibeygi, R. de Callafon, M. Stanovich, M. Sloderbeck, K. Schoder, J. Langston, I. Leonard, S. Chatterjee, and R. Meeker, “Microgrid control using remote controller hardware-in-the-loop over the internet,” Apr. 2018. | spa |
dc.relation.references | [5] C. Serrano, M. Betz, L. Doolittle, S. Paiagua, and V. Vytla, “Hardware-in-the-loop testing of accelerator firmware,” in 17th International Conference on Accelerator and Large Experimental Physics Control Systems, 10 2019. | spa |
dc.relation.references | [6] M. Sarwar, A. Ramzan, M. U. Naseer, and B. Asad, “Real time control and performance analysis of a smart multi-machine system through hardware-in-the-loop simulation,” Jul. 2019. | spa |
dc.relation.references | [7] S. Karaman and L. Guvenc, “Low cost, educational internal combustion engine electronic control unit hardware-in-the-loop test systems,” Dec. 2020. | spa |
dc.relation.references | [8] K. R. Jayasree, P. R. Jayasree, and A. Vivek, “Dynamic target tracking using a four wheeled mobile robot with optimal path planning technique,” 2017. | spa |
dc.relation.references | [9] W. Gong, H. Xu, Q. Li, H. Gu, C. Han, S. Song, and M. Q.-H. Meng, “Mobile Robot Manipulation System Design in Given Environments,” no. July, pp. 609–613, 2017. | spa |
dc.relation.references | [10] C. Park, D. Park, G. Jung, D. Kim, K. Park, C. Park, and T. Choi, “A robot manipulator on the mobile platform for an off-road environment,” no. Iccas, pp. 282–285, 2014. | spa |
dc.relation.references | [11] S. Aguilera-Marinovic, M. Torres-Torriti, and F. Auat-Cheein, “General Dynamic Model for Skid-Steer Mobile Manipulators With Wheel-Ground Interactions,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 433–444, 2017. | spa |
dc.relation.references | [12] T. Fröhlich and U. Reiser, “Design and implementation of a spherical joint for mobile manipulators,” vol. 2016, pp. 251–258, 2016. | spa |
dc.relation.references | [13] S.-H. Kim, B. Yoon, H. J. Lee, S. Kim, K.-S. Kim, J. C. Kim, and T. Y. Noh, “Portable Serial Robot Manipulator with Distributed Actuation Mechanism,” 14th International Conference on Control, Automation and Systems, pp. 1590–1593, 2014. | spa |
dc.relation.references | [14] Y. Wang, G. Yang, and L. Liu, “Configuration-Independent Kinematics for Modular Mobile Manipulators,” 2016 IEEE International Conference on Information and Automation, IEEE ICIA 2016, vol. 4, no. August, pp. 1212–1217, 2017. | spa |
dc.relation.references | [15] R. C. Luo and Z.-X. Liao, “Design and Implementation of Modularized 7-DOFs Dual Arm Manipulator,” in Proceedings of the IEEE International Conference on Industrial Technology, vol. 2016-May, 2016, pp. 65–71. | spa |
dc.relation.references | [16] M. Acosta and S. Kanarachos, “Tire lateral force estimation and grip potential identification using Neural Networks, Extended Kalman Filter, and Recursive Least Squares,” pp. 1–21, 2017. | spa |
dc.relation.references | [17] D. Sprute, R. Rasch, K. Tonnies, and M. Konig, “A Framework for Interactive Teaching of Virtual Borders to Mobile Robots,” pp. 1175–1181, 2017. | spa |
dc.relation.references | [18] T. Kot, J. Babjak, V. Krys, and P. Novák, “System for Automatic Collisions Prevention for a Manipulator Arm of a mobile robot,” SAMI 2014 - IEEE 12th International Symposium on Applied Machine Intelligence and Informatics, Proceedings, pp. 167–171, 2014. | spa |
dc.relation.references | [19] C. Chandrasenan, N. T.A., R. Rajan, and V. K, “Autonomous Mobile Robot with Manipulator Based on Multisensor Data Fusion for Target Detection,” International Journal of Research in Engineering and Technology, pp. 75–81, 2014. | spa |
dc.relation.references | [20] T. Fujita and W. Segawa, “Object Gripping and Lifting based on Plane Detection by Tracked Mobile Robot with Two Manipulators,” no. July, pp. 412–416, 2017. | spa |
dc.relation.references | [21] T. H. Luu and T. H. Tran, “3D Vision for Mobile robot Manipulator on Detecting and Tracking Target,” Control, Automation and Systems (ICCAS), 2015 15th International Conference on, no. Iccas, pp. 1560–1565, 2015. | spa |
dc.relation.references | [22] A. Sharp, K. Kruusamae, B. Ebersole, and M. Pryor, “Semiautonomous Dual-Arm Mobile Manipulator System with Intuitive Supervisory User Interfaces,” Proceedings of IEEE Workshop on Advanced Robotics and its Social Impacts, ARSO, 2017. | spa |
dc.relation.references | [23] G. Pajak and I. Pajak, “Planning of a point to point collision-free trajectory for mobile manipulators,” International Journal of Applied Mechanics and Engineering, vol. 18, no. 2, pp. 475–489, 2015. [Online]. Available: http://www.degruyter.com/view/j/ijame.2013.18.issue-2/ijame-2013- 0028/ijame-2013-0028.xml | spa |
dc.relation.references | [24] E. H. Chouaib Harik, F. Guérin, F. Guinand, J.-F. Brethé, and H. Pelvillain, “A Decentralized Interactive Architecture for Aerial and Ground Mobile Robots Cooperation,” 2014. | spa |
dc.relation.references | [25] V. H. Andaluz, J. S. Ortiz, M. Pérez, F. Roberti, and R. Carelli, “Adaptive Cooperative Control of Multi-Mobile Manipulators,” IECON Proceedings (Industrial Electronics Conference), pp. 2669–2675, 2014. | spa |
dc.relation.references | [26] A. Petitti, A. Franchi, D. D. Paola, and A. Rizzo, “Decentralized Motion Control for Cooperative Manipulation with a Team of Networked Mobile Manipulators,” 2016. | spa |
dc.relation.references | [27] G.-B. Dai and Y.-C. Liu, “Distributed Coordination and Cooperation Control for Networked Mobile Manipulators,” IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 5065–5074, 2017. | spa |
dc.relation.references | [28] T. Fujita, “Regions of Interest in Object Selection and Hand Movement Actions by Wheeled Mobile Robot with a Manipulator,” Proceedings - 2016 the 2nd International Conference on Control, Automation and Robotics, ICCAR 2016, pp. 20–23, 2016. | spa |
dc.relation.references | [29] J. Jiao, Z. Cao, N. Gu, S. Nahavandi, Y. Yang, and M. Tan, “Transportation by Multiple Mobile Manipulators in Unknown Environments With Obstacles,” pp. 1– 11, 2015. | spa |
dc.relation.references | [30] Z. Cao, N. Gu, J. Jiao, S. Nahavandi, C. Zhou, and M. Tan, “A Novel Geometric Transportation Approach for Multiple Mobile Manipulators in Unknown Environments,” pp. 1–9, 2016. | spa |
dc.relation.references | [31] K. Oh, J. Seo, J.-G. Kim, and K. Yi, “MPC-based Approach to Optimized Steering for Minimum Turning Radius and Efficient Steering of Multi-axle Crane,” International Journal of Control, Automation and Systems, vol. 15, no. 4, pp. 1799–1813, 2017. | spa |
dc.relation.references | [32] K. Naveed and Z. H. Khan, “Adaptive Path Tracking Control Design for a Wheeled Mobile Robot,” Applied Mechanics and Materials, vol. 29-32, pp. 2076–2081, 2017. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2- s2.0-78650779262&doi=10.4028%2Fwww.scientific.net%2FAMM.29- 32.2076&partnerID=40&md5=2d851499ab9afa6ae0aae2ebd41ae3f7 | spa |
dc.relation.references | [33] A. Rojas-Moreno and G. Pérez-Valenzuela, “Fractional Order Tracking Control of a Wheeled Mobile Robot,” 2017. | spa |
dc.relation.references | [34] X. Lu, J. Fei, and J. Huang, “Fuzzy Neural Network Based Adaptive Iterative Learning Control Scheme for Velocity Tracking of Wheeled Mobile Robots,” pp. 106–111, 2017. | spa |
dc.relation.references | [35] S. Kimura, H. Nakamura, H. Shudai, T. Ibuki, and M. Sampei, “Position and Attitude Control of Two-wheeled Mobile Robot using Multilayer Minimum Projection Method,” pp. 0–5, 2017. | spa |
dc.relation.references | [36] Z. Sun, Y. Xia, L. Dai, K. Liu, and D. Ma, “Disturbance rejection MPC for tracking of wheeled mobile robot,” IEEE/ASME Transactions on Mechatronics, vol. 4435, no. c, pp. 1–11, 2017. | spa |
dc.relation.references | [37] K. G. Tran, P. D. Nguyen, and N. H. Nguyen, “Advanced Control Methods for Two-Wheeled Mobile Robots,” no. 1, pp. 344–348, 2017. | spa |
dc.relation.references | [38] W. Domski, A. Mazur, and M. Kaczmarek, “Adaptive algorithm for a mobile manipulator with extended factitious force approach,” 11th International Workshop on Robot Motion and Control, RoMoCo 2017 - Workshop Proceedings, vol. 4, pp. 111–116, 2017. | spa |
dc.relation.references | [39] M. Souzanchi-K, A. Arab, M.-R. Akbarzadeh-T., and M. M. Fateh, “Robust Impedance Control of Uncertain Mobile Manipulators Using Time-Delay Compensation,” IEEE Transactions on Control Systems Technology, pp. 1–12, 2017. | spa |
dc.relation.references | [40] A. Brahmi, M. Saad, G. Gauthier, B. Brahmi, W.-H. Zhu, and J. Ghommam, “Adaptive Backstepping Control of Mobile Manipulator Robot Based on Virtual Decomposition Approach,” pp. 707–712, 2016. | spa |
dc.relation.references | [41] T. T. T. Barros and W. Fetter Lages, “A Mobile Manipulator Controller Implemented in the Robot Operating System,” ISR/Robotik 2014; 41st International Symposium on Robotics; Proceedings of, pp. 1–8, 2014. | spa |
dc.relation.references | [42] M. M. Fateh and M. A. Shahri, “A Fuzzy Logic Based Motion Control for Nonholonomic Mobile Manipulator Robots,” pp. 613–618, 2014. | spa |
dc.relation.references | [43] T. Mai and Y. Wang, “Adaptive Force/Motion Control System Based on Recurrent FuzzyWavelet CMAC Neural Networks for Condenser Cleaning Crawler-Type Mobile Manipulator Robot,” IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1973–1982, 2014. | spa |
dc.relation.references | [44] C. Röhrig, D. Heß, and F. Künemund, “Motion Controller Design for a Mecanum Wheeled Mobile Manipulator,” 2017. [Online]. Available: https://www.fhdortmund. de/roehrig/papers/roehrigCCTA17.pdf | spa |
dc.relation.references | [45] M. Galicki, “Optimal kinematic finite-time control of mobile manipulators,” 11th International Workshop on Robot Motion and Control, RoMoCo 2017 - Workshop Proceedings, pp. 129–134, 2017. | spa |
dc.relation.references | [46] M. Mashali, R. Alqasemi, and R. Dubey, “Mobile Manipulator Dual-Trajectory Tracking Using Control Variables Introduced to End-Effector Task Vector,” World Automation Congress Proceedings, vol. 2016-Octob, pp. 1–6, 2016. | spa |
dc.relation.references | [47] M. Giftthaler, F. Farshidian, T. Sandy, L. Stadelmann, and J. Buchli, “Efficient Kinematic Planning for Mobile Manipulators with Non-holonomic Constraints Using Optimal Control,” pp. 3411–3417, 2017. [Online]. Available: http://arxiv.org/abs/1701.08051%0Ahttp://dx.doi.org/10.1109/ICRA.2017.7989388 | spa |
dc.relation.references | [48] J. J. Quiroz-Omaña and B. V. Adorno, “Parsimonious Kinematic Control of Nonholonomic Mobile Manipulators,” 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), pp. 73–78, 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7783505/ | spa |
dc.relation.references | [49] Y.-q. Wu and W. Sun, “Adaptive Tracking Control of Mobile Manipulator with Holonomic and Affine Constraints,” pp. 273–278, 2014. | spa |
dc.relation.references | [50] G. B. Avanzini, A. M. Zanchettin, and P. Rocco, “Constraint-Based Model Predictive Control for Holonomic Mobile Manipulators,” IEEE International Conference on Intelligent Robots and Systems, vol. 2015-Decem, no. i, pp. 1473–1479, 2015. | spa |
dc.relation.references | [51] D.-H. Zhai and Y. Xia, “Adaptive Fuzzy Control of Multilateral Asymmetric Teleoperation for Coordinated Multiple Mobile Manipulators,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 57–70, 2016. | spa |
dc.relation.references | [52] K. Capek, “Robots Universales Rossum,” 1966. [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Robots+Universales+Rossum#2 | spa |
dc.relation.references | [53] O. F. Aviles Sánchez, “Introducción a robots manipuladores móviles,” 2018. | spa |
dc.relation.references | [54] O. F. Avilés Sánchez, “Introducción a la robótica industrial: Transformaciones,” 2016. | spa |
dc.relation.references | [55] M. N. Mladenovic and M. M. Abbas, “Multi-scale integration of petri net modeling and software-in-the-loop simulation for novel approach to assessment of operational capabilities in the advanced transportation controllers,” in 14th International IEEE Conference on Intelligent Transportation Systems, ITSC 2011, Washington, DC, USA, October 5-7, 2011. IEEE, 2011, pp. 1051–1056. | spa |
dc.relation.references | [56] S. Jeong, Y. Kwak, and W. J. Lee, “Software-in-the-loop simulation for early-stage testing of AUTOSAR software component,” in Eighth International Conference on Ubiquitous and Future Networks, ICUFN 2016, Vienna, Austria, July 5-8, 2016. IEEE, 2016, pp. 59–63. | spa |
dc.relation.references | [57] N. Hansen, N. Wiechowski, A. Kugler, S. Kowalewski, T. Rambow, and R. Busch, “Model-in-the-loop and software-in-the-loop testing of closed-loop automotive software with arttest,” in 47. Jahrestagung der Gesellschaft für Informatik, Digitale Kulturen, INFORMATIK 2017, Chemnitz, Germany, September 25-29, 2017, ser. LNI, M. Eibl and M. Gaedke, Eds., vol. P-275. GI, 2017, pp. 1537–1549. [Online]. Available: https://doi.org/10.18420/in2017 | spa |
dc.relation.references | [58] O. Frotscher, T. Oppelt, T. Urbaneck, S. Otto, I. Heinrich, A. Schmidt, T. Göschel, U. Uhlig, and H. Frey, “Software-in-the-loop-simulation of a district heating system as test environment for a sophisticated operating software,” in Proceedings of the 9th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2019, Prague, Czech Republic, July 29-31, 2019, M. S. Obaidat, T. I. Ören, and H. Szczerbicka, Eds. SciTePress, 2019, pp. 223–230. | spa |
dc.relation.references | [59] C. Beyer, J. Emmerich, and U. Werner, “Software in the loop - A window lifter model to guide students through the software development process,” in 2017 IEEE Global Engineering Education Conference, EDUCON 2017, Athens, Greece, April 25-28, 2017. IEEE, 2017, pp. 1488–1493. | spa |
dc.relation.references | [60] J. J. Craig, ROBOTICA. PEARSON EDUCACION, 2006. | spa |
dc.relation.references | [61] R. A. Castillo Estepa, “Cinemática de manipuladores,” 2017. | spa |
dc.relation.references | [62] C. H. Muñoz García, O. F. Avilés Sánchez, and M. F. Mauledoux Monroy, “Analysis and Simulation of the Couple Direct Kinematics of a Six Wheeled Mobile Platform with a 3 DOF Manipulator Arm,” International Journal of Advanced Science and Technology, vol. 29, no. 5, pp. 4819–4829, 2020. [Online]. Available: http://sersc.org/journals/index.php/IJAST/article/view/13868 | spa |
dc.relation.references | [63] K. Ogata, Modern Control Engineering, 5th ed. Pearson, 2010. | spa |
dc.relation.references | [64] R. C. Dorf, SISTEMAS MODERNOS DE CONTROL. ADDISON-WESLEY IBEROAMERICANA, 1989. | spa |
dc.relation.references | [65] C. H. Muñoz, M. F. Mauledoux, O. F. Avilés, R. Castillo, and R. Jiménez, “Discrete Generalized PI Control applied to a DC-DC Converter with a Coupled Motor,” International Journal of Advanced Science and Technology, vol. 29, no. 5, pp. 3697–3709, 2020. [Online]. Available: http://sersc.org/journals/index.php/IJAST/article/view/12265 | spa |
dc.subject.proposal | Manipulador Móvil UMNG | spa |
dc.subject.proposal | Control Avanzado | spa |
dc.subject.proposal | Brazo Manipulador | spa |
dc.subject.proposal | Plataforma Móvil | spa |
dc.subject.proposal | Software-In-The-Loop | spa |
dc.subject.proposal | Hardware-In-The-Loop | spa |
dc.subject.proposal | PI Generalizado Discreto | spa |
dc.publisher.grantor | Universidad Militar Nueva Granada | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | * |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | spa |
dc.identifier.instname | instname:Universidad Militar Nueva Granada | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Militar Nueva Granada | spa |
dc.identifier.repourl | repourl:https://repository.unimilitar.edu.co | spa |
dc.rights.local | Acceso abierto | spa |
dc.coverage.sede | Calle 100 | spa |