Show simple item record

dc.contributor.advisorGarrido, Diogenes Alexander
dc.contributor.authorPrada Saavedra, Hernán Dario
dc.date.accessioned2023-05-24T17:46:27Z
dc.date.available2023-05-24T17:46:27Z
dc.date.issued2022-06-24
dc.identifier.urihttp://hdl.handle.net/10654/43864
dc.description.abstractEl tráfico de drogas ilegales es un negocio criminal resiliente que afecta a muchos países a pesar de los grandes esfuerzos por parte de los gobiernos para contenerlo. Dentro de estos esfuerzos, la Armada Nacional emplea las operaciones de interdicción marítima (OIM) como la principal herramienta para combatir la cadena logística del narcotráfico. En la presente investigación se propone un modelo de simulación basada en agentes (ABMS) que permite hallar la “mejor localización y configuración” de los Sistemas de Aeronaves Remotamente Pilotadas (RPAS) empleados en la lucha contra este flagelo. Para este propósito se utilizó el software NetLogo como plataforma para la simulación y Minitab con herramienta estadística para tratar los datos obtenidos en un experimento factorial completo de dos niveles. Los resultados demostraron que, primero, la localización y configuración de los RPAS influyen en la efectividad de las OIM, y segundo, la aplicación de una estrategia de ubicación por centro de gravedad favorece la mejora de los indicadores de afectación a la resiliencia de las rutas del narcotráfico. Finalmente, el modelo propuesto puede usarse como herramienta para tomar decisiones sobre la localización de bases de lanzamiento y selección de RPAS que participen en OIM.spa
dc.format.mimetypeapplicaction/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleEstudio sobre cómo aumentar la efectividad de las operaciones de interdicción marítima para reducir la resiliencia de la red logística del narcotráficospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2*
dc.subject.lembSIMULACION POR COMPUTADORESspa
dc.subject.lembVEHICULOS PILOTEADOS DE FORMA REMOTAspa
dc.subject.lembCONTROL DE DROGAS Y NARCOTICOSspa
dc.subject.lembPROGRAMAS PARA COMPUTADOR (NETLOGO)spa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.description.abstractenglishIllegal drug trafficking is a resilient criminal business that affects many countries despite great efforts by governments to contain it. Within these efforts, the National Navy uses maritime interdiction operations (MIO) as the main tool to combat the logistic chain of drug trafficking. In the present investigation, an agent-based simulation model (ABMS) is proposed that allows finding the "best location and configuration" of the Remotely Piloted Aircraft Systems (RPAS) used in the fight against this scourge. For this purpose, the NetLogo software was used as a platform for the simulation and Minitab with a statistical tool to treat the data obtained in a complete two-level factorial experiment. The results showed that, first, the location and configuration of the RPAS influence the effectiveness of the MIO, and second, the application of a location strategy by center of gravity favors the improvement of the indicators affecting the resilience of the routes of drug trafficking. Finally, the proposed model can be used as a tool to make decisions about the location of launch bases and the selection of RPAS that participate in MIO.spa
dc.title.translatedStudy on how to increase the effectiveness of maritime interdiction operations to reduce the resilience of the drug trafficking logistics networkspa
dc.subject.keywordsAgent Based Simulationspa
dc.subject.keywordsMaritime Interdictionspa
dc.subject.keywordsDrug Trafficking Resiliencespa
dc.subject.keywordsRemotely Piloted Aircraft Systemsspa
dc.publisher.programMaestría en Logística Integralspa
dc.creator.degreenameMagíster en Logística Integralspa
dc.description.degreelevelMaestríaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.relation.referencesAbar, S., Theodoropoulos, G. K., Lemarinier, P., & O’Hare, G. M. (2017). Agent Based Modelling and Simulation tools: A review of the state-of-art software. Computer Science Review, 24, 13-33.spa
dc.relation.referencesAdami, C., Schossau, J., & Hintze, A. (2016). Evolutionary game theory using agent-based methods. Physics of life reviews, 19, 1-26.spa
dc.relation.referencesAnghinolfi, D. C., Paolucci, M., & Perra, F. (2013). An agent-based simulator for the evaluation of the measurement of effectiveness in the military naval tasks. 17th International Conference on System Theory, Control and Computing, 733-738.spa
dc.relation.referencesAronica, S., Benvegna, F., Cossentino, M., Gaglio, S., Langiu, A., Lodato, C., . . . Sangiorgi, P. (2010). An Agent-based System for Maritime Search and rescue operations. WOA.spa
dc.relation.referencesAtkinson, M. P., Kress, M., & Szechtman, R. (2017). Maritime transportation of illegal drugs from South America. International Journal of Drug Policy, 39, 43-51.spa
dc.relation.referencesBasu, G. (2013). The role of transnational smuggling operations in illicit supply chains. . Journal of Transportation Security, 315-328.spa
dc.relation.referencesBichler, G., Malm, A., & Cooper, T. (2017). Drug supply networks: a systematic review of the organizational structure of illicit drug trade. Crime Science, 6(1), 2.spa
dc.relation.referencesBohórquez, K. (7 de Marzo de 2020). La producción de cocaína equivale a un poco más de 0,3% de la economía colombiana. La República. https://www.larepublica.co/economia/la-produccion-de-cocaina-pesa-03-en-la-economia-colombiana-2974251spa
dc.relation.referencesBouchard, M. (2007). On the resilience of illegal drug markets. Global crime, 325-344.spa
dc.relation.referencesBrailsford, S., Eldabi, T., Kunc, M., Mustafee, N., & Osorio, A. F. (2019). Hybrid simulation modelling in operational research: A state-of-the-art review. European Journal of Operational Research, 721-737.spa
dc.relation.referencesCatanese, S., De Meo, P., & Fiumara, G. (2016). Resilience in criminal networks. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 94(2), 1.spa
dc.relation.referencesCentro Internacional Marítimo de Análisis Contra el Narcotráfico (CMCON). (2017). Narcotráfico Marítimo: Amenaza Compleja Dinámica y Adaptativa. Revista CNCOM, 1-108.spa
dc.relation.referencesChen, X., Ong, Y. S., Tan, P. S., Zhang, N., & Li, Z. (2013). Agent-based modeling and simulation for supply chain risk management-a survey of the state-of-the-art. In Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on IEEE., 1294-1299.spa
dc.relation.referencesCMCON. (2017). Interdicción. Eslabón de mayor impacto en la cadena de valor del narcotráfico. Revista CMCON, 1-120.spa
dc.relation.referencesCMCON. (2020). Catálogo de modalidades del narcotráfico marítimo. Cartagena de Indias D.T. y C.: Armada de Colombia.spa
dc.relation.referencesCMCON. (2021). Dinámica Regional Narcotráfico Marítimo Países 2020. Cartagena de Indias D.T. y C.: Armada de Colombia.spa
dc.relation.referencesComando General de las FF.MM. (2008). Directiva Permanente No 003 . Difusión y aplicación tareas y roles fuerzas militares, 1-97.spa
dc.relation.referencesCorte Constitucional República de Colombia. (2012). Sentencia C-239/12. https://www.corteconstitucional.gov.co/relatoria/2012/C-239-12.htmspa
dc.relation.referencesDabrowski, J. J., & De Villiers, J. P. (2015). Maritime Piracy Situation Modelling with Dynamic Bayesian Networks. Information fusion, 23, 116-130.spa
dc.relation.referencesDEA. (2021). Drug Enforcement Administration 2020 National Drug Threat Assessment. Department of Justice.spa
dc.relation.referencesDecraene, J., Anderson, M., & Low, M. Y. (2010). Maritime counter-piracy study using agent-based simulations. In Proceedings of the 2010 Spring Simulation Multiconference. Society for Computer Simulation International, 165.spa
dc.relation.referencesDecreto Ley 2324. (18 de septiembre de 1984). Por el cual se reorganiza la Dirección General Marítima y Portuaria. www.dimar.mil.co: https://www.dimar.mil.co/sites/default/files/dl2_3241984.pdfspa
dc.relation.referencesDiaz, J., Vallejo, G., Serrano, M., & Lievano, G. (2017). Relevancia de la interdicción marítima sobre la cadena de valor del narcotráfico, en el pacífico colombiano. Centro Internacional Marítimo de Análisis Contra el Narcotráfico CIMCOM, 88-99.spa
dc.relation.referencesDobias, P., Eisler, M. C., & Liu, M. J. (2016). Use of agent-based models in support of coastal surveillance planning and assessment. Defence Research and Development Canada R16, 11-84.spa
dc.relation.referencesDuijn, P. A., Kashirin, V., & Sloot, P. M. (2014). The relative ineffectiveness of criminal network disruption. Scientific reports, 4, 4238.spa
dc.relation.referencesDurán, A. E. (7 de Agosto de 2018). La ruta para hacer eficiente la lucha contra las drogas (EL TIEMPO). (P. Apoleyo Mendoza, Entrevistador)spa
dc.relation.referencesDuxbury, S. W., & Haynie, D. L. (2019). Criminal network security: An agent-based approach to evaluating network resilience. Criminology, 1-29.spa
dc.relation.referencesGarrido, A. (2017). A Mixed-method Study on the Effectiveness of a Buffering Strategy in the Relationship Between Risks and Resilience. (Doctoral dissertation, University of Warwick).spa
dc.relation.referencesGarrido, A., & Álvarez, L. (2019). A military food supply chain in a hostile environment: a case study. Proceedings of the 2019 Winter Simulation Conference.spa
dc.relation.referencesGrimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: a review and first update. Ecological modelling, 221(23), 2760-2768.spa
dc.relation.referencesGroff, E. R., Johnson, S. D., & Thornton, A. (2019). State of the Art in Agent-Based Modeling of Urban Crime: An Overview. Journal of Quantitative Criminology, 155-193spa
dc.relation.referencesGuerrero, C. J. (2017). Maritime interdiction in the war on drugs in Colombia: practices, technologies and technological innovation. Thesis for the Degree of: Doctor of Philosophy Science and Technology Studies The University of Edinburgh.spa
dc.relation.referencesHrstka, O., Vaňek, O., Kopřiva, Š., Zelinka, J., Faigl, J., & Pěchouček, M. (2015). Agent-based approach to illegal maritime behavior modeling. Zeszyty Naukowe Akademii Morskiej w Szczecinie.spa
dc.relation.referencesHuang, F. (2020). MANOVA: A Procedure Whose Time Has Passed? Gifted Child Quarterly, Vol. 64(1) 56–60.spa
dc.relation.referencesJakob, M., Vaněk, O., Hrstka, O., & Pěchouček, M. (2012). Agents vs. pirates: multi-agent simulation and optimization to fight maritime piracy. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 1. International Foundation for Autonomous Agents and Multiagent Systems, 37-44.spa
dc.relation.referencesJohnson, P. G., Balke, T., & Kotthoff, L. (2014). Integrating Optimisation And Agent-Based Modelling. ECMS, 775-781.spa
dc.relation.referencesJomini, A. H. (2007). The Art of War. Translated by GH Mendell and WP Craighill. New York: Dover Publications.spa
dc.relation.referencesKaymal, T. (2016). Unmanned aircraft systems for maritime operations: choosing a good design for achieving operational effectiveness. International Conference on Unmanned Aircraft Systems, 763-768.spa
dc.relation.referencesKim, Y., Chen, Y. S., & Linderman, K. (2015). Supply network disruption and resilience: A network structural perspective. Journal of operations Management, 43-59spa
dc.relation.referencesKlügl, F. (2008). A validation methodology for agent-based simulations. Proceedings of the 2008 ACM symposium on Applied computing, 39-43spa
dc.relation.referencesLaw, A. M. (2005). How to build valid and credible simulation models. 2005 Winter Simulation Conference, 24-32spa
dc.relation.referencesLeuprecht, C., Aulthouse, A., & Walther, O. (2016). The puzzling resilience of transnational organized criminal networks. Police Practice and Research, 376-387spa
dc.relation.referencesLucas, G. R. (2015). Ethics and UAVs. Handbook of Unmanned Aerial Vehicles, 2865-2878spa
dc.relation.referencesMacal, C. M., & North, M. J. (2014). Introductory tutorial: Agent-based modeling and simulation. In Proceedings of the 2014 winter simulation conference. IEEE Press, 6-20spa
dc.relation.referencesMagliocca, N. R., McSweeney, K., Sesnie, S. E., Tellman, E., Devine, J. A., Nielsen, E. A., & Wrathall, D. J. (2019). Modeling cocaine traffickers and counterdrug interdiction forces as a complex adaptive system. Proceedings of the National Academy of Sciences, 7784-7792spa
dc.relation.referencesMarchione, E., Johnson, S. D., & Wilson, A. (2014). Modelling maritime piracy: a spatial approach. Journal of Artificial Societies and Social Simulation, 17(2), 9spa
dc.relation.referencesMelo, O., López, L., & Melo, S. (2020). Diseño de Experimentos Métodos y Aplicaciones, 2da edición. Bogotá: Universidad Nacional de Colombiaspa
dc.relation.referencesMinisterio de Defensa Nacional. (31 de Enero de 2022). Viceministerio para las Políticas y Asuntos Internacionales. Información de criminalidad, resultados operacionales y delitos contra las propias tropas: https://www.mindefensa.gov.co/irj/go/km/docs/Mindefensa/Documentos/descargas/estudios_sectoriales/info_estadistica/Avance_Politica_Defensa_Seguridad.pdfspa
dc.relation.referencesMinisterio Defensa Nacional. (2019). Política de Defensa y Seguridad PDS - Para la Legalidad, el Emprendimiento y la Equidad. Bogotá D.C.: MDNspa
dc.relation.referencesMoon, Y. B. (2017). Simulation modelling for sustainability: a review of the literature. International Journal of Sustainable Engineering, 10(01), 2-19spa
dc.relation.referencesMualla, Y., Najjar, A., Daoud, A., Galland, S., Nicolle, C., & Shakshuki, E. (2019). Agent-based simulation of unmanned aerial vehicles in civilian applications: A systematic literature review and research directions. Future Generation Computer Systems, 344-364spa
dc.relation.referencesOkcu, H. (2016). Utilization of unmanned aircraft systems in maritime domain: Challenges and opportunities. International Conference on Unmanned Aircraft Systems (ICUAS), 920-925spa
dc.relation.referencesOliveira, J. B., Lima, R. S., & Montevechi, J. A. (2016). Perspectives and relationships in Supply Chain Simulation: A systematic literature review. Simulation Modelling Practice and Theory, 62, 166-191.spa
dc.relation.referencesOnggo, B. S., & Karatas, M. (2015). Agent-based model of maritime search operations: A validation using test-driven simulation modelling. 2015 Winter Simulation Conference, 254-265.spa
dc.relation.referencesOnggo, B. S., & Karatas, M. (2016). Test driven simulation modelling A case study using agent based maritime search operation simulation. European Journal of Operational Research, 254(2), 517-531.spa
dc.relation.referencesOrganización de Aviación Civil Internacional. (2015). Doc 10019, Manual sobre sistemas de aeronaves pilotadas a distancia (RPAS). Montreal: OACI.spa
dc.relation.referencesOsorio, L. H. (2016). Caracterización de la logística naval operativa. En S. U. Cáceres, Estrategia marítima, evolución y prospectiva (págs. 362-385). Bogotá D.C.: Escuela Superior de Guerra.spa
dc.relation.referencesRazi, N., Karatas, M., & Gunal, M. (2016). A combined optimization and simulation based methodology for locating search and rescue helicopters. SpringSim-ANSS, 2-9.spa
dc.relation.referencesSAS Institute Inc. (2016). JMP® 13 Design of Experiments Guide. Cary, NC: SAS Institute Incspa
dc.relation.referencesSibley, C. (2016). Be Alert and Stay the Course: An Agent-Based Model Exploring Maritime Piracy Countermeasures. In International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation , 356-365.spa
dc.relation.referencesSIMCI. (2021). Monitoreo de territorios afectados por cultivos ilícitos 2020. Bogotá: Legis S. Aspa
dc.relation.referencesSun, Z., Lorscheid, I., Millington, J. D., Lauf, S., Magliocca, N. R., Groeneveld, J., . . . Buchmann, C. M. (2016). Simple or complicated agent-based models? A complicated issue. Environmental Modelling & Software, 86, 56-67.spa
dc.relation.referencesTanguy, M., & Napoli, A. (2016). An assessment approach of maritime supply chain of energy vulnerability to piracy risk by simulation of spatial behavior. ESREL 2016 Taylor & Francis, ISBN-978spa
dc.relation.referencesToth, A. G., & Mitchell, O. (2018). A qualitative examination of the effects of international counter-drug interdictions. International Journal of Drug Policy, 55, 70-76spa
dc.relation.referencesUniversidad del Rosario, Ministerio de Justicia y del Derecho. (2021). Caracterización y estimación económica de la cadena de valor del narcotráfico en Colombia.spa
dc.relation.referencesUNODC. (2017). World Drug Report 2017. Vienna: United Nations publication.spa
dc.relation.referencesUNODC. (2018). World Drug Report 2018. Vienna: United Nations publication.spa
dc.relation.referencesUNODC. (2021). World Drug Report 2021. Vienna: United Nations publication.spa
dc.relation.referencesVaněk, O., Jakob, M., Hrstka, O., & Pěchouček, M. (2011). Using Multi-agent Simulation to Improve the Security of Maritime Transit. International Workshop on Multi-Agent Systems and Agent-Based Simulation (pp. 44-58). Berlin, Heidelberg: Springer.spa
dc.relation.referencesVaněk, O., Jakob, M., Hrstka, O., & Pěchouček, M. (2013). Agent based Model of Maritime Traffic in Piracy affected waters. Transportation research part C emerging technologies, 157-176.spa
dc.relation.referencesVaněk, O., Jakob, M., Hrstka, O., & Pěchouček, M. (2013). Agent based Model of Maritime Traffic in Piracy affected waters. Transportation research part C emerging technologies, 157-176.spa
dc.relation.referencesVaněk, O., Kopřiva, Š., Ondráček, J., Hrstka, O., & Pěchček, M. (2016). Modeling maritime contraband trafficking activities with the agent-based approach. In E. Shahbazian, & G. Rogova, Meeting Security Challenges Through Data Analytics and Decision Support (pp. 168-183). Amsterdam: IOS Press.spa
dc.relation.referencesVarol, A. E., & Gunal, M. M. (2015). Simulating prevention operations at sea against maritime piracy. Journal of the Operational Research Society, 2037-2049.spa
dc.relation.referencesWilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/ Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, IL.spa
dc.subject.proposalSimulación Basada en Agentesspa
dc.subject.proposalInterdicción Marítimaspa
dc.subject.proposalResiliencia del Narcotráficospa
dc.subject.proposalSistemas de Aeronaves Remotamente Pilotadasspa
dc.publisher.grantorUniversidad Militar Nueva Granadaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc*
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.identifier.instnameinstname:Universidad Militar Nueva Granadaspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Militar Nueva Granadaspa
dc.identifier.repourlrepourl:https://repository.unimilitar.edu.cospa
dc.rights.localAcceso abiertospa
dc.coverage.sedeCalle 100spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/