Unit Test Procedure and Report (Peripherals

configuration)

Hardware Configuration

Microcontroller test (Flat configuration)

Software Configuration

Structured Project (Algorithms Functions)

Test Input

Configuration for peripherals functions.

Requirements

Keil uVision 5 and the STM32F07VG Board.
Peripherals: Bluetooth module and an LCD

Instructions

- Connect the STM32F7 to a computer using the micro USB port.

- For testing make sure that all variables had been initialized as you want.
- Clean and check the variables you want to follow using the Debugger.

- Build and program.

Special Notes

The test result for the peripherals configuration unit test is to create different
classes to call in the main code in order to setup the maximum speed for the
microcontroller and GPIO (General Purpose Input/Output) configuration to
connect peripherals as a Bluetooth or an LCD.

Expected test results

Connect the microcontroller with an external GUIDE using Bluetooth, and
visualize the changes in the GUIDE using the LCD connected to the
microcontroller.

Test Engineer

David Enrique Lizarazo Vesga

QA Robinson Jiménez Moreno

Instructions Notes Log Test | QA
Power on spacecraft X

Run unit test Clases_Leds X
Previous Build time is: Jul 23 2019 X

Instructions

Open the project and check code:

Once you have opened the project and as explained
in previous Unit test, you could find the classes codes
in the project tree in the left side of the program.

To run this Unit test, make sure that the header
codes shown below are linked or imported correctly

in the project.

ginclude <stdio.h>

#include <stdlib.h>

"stm32£7xx.h"

"ALGORITMOS/CONF IGURACION/CONF.h"
"ALGORITHOS/ALGORITMO_ 1/ALG1.h"
"ALGORITMOS/ALGORITMO 2/ALG2.h"
"ALGORITHOS/ALGORITMO 3/ALG3.h"

#include "ALGORITMOS/ALGORITMO 4/ALG4.h"
finclude "ALGORITMOS/OPERACIONES/OPE.h"
#include "ALGORITMOS/LCD/LCDFUN.h"

As you can see there are the algorithms codes as well
as a class that helps to configurate the
microcontroller, do matrix simple operations and
setup the necessary GPIO for the LCD to work.

To be cleared with the electrical connections in the
flat configuration the next part of the code is the
enumeration of the GPIO used to reproduce the
code. This also helps to create the layout of the PCB
when all the peripherals that are going to be used

were set.

/* *%% PINOUT
PF3 -> ADC3
PC10 -> ES UART4 TX (Esguina superior tarjeta) -> Va a RX BLUETOOTH
PC11 -> ES UART4 RY (Esquina superior tarjeta | -> Va a TX Bluetooth
Pid -> DAC (Chanel 1)
PBO-PBY -> LCD

PD& DHT11

Previous
instructions

Build time is:

Set Peripherals:

All the peripherals that are going to be used have
been set in different classes. This allows us to
decelerate different functions to all the peripherals.
This can be seen in the configuration functions for
every peripheral, where different processes are
done. Another strategy that has been used is the
internal call of functions, this helps to minimize the
code that must be call in the main code.

memset (MENSAJE ALGORITHNOS ,0, sizeof (MENSAJE ALGORITHOSZ)):

strcat (MENSAJE_ALGORITMOS, "ALGORITHOS IA");
IL LCD_WRITE_CABLE DELV (MENSAJE ALGORITMOS,1,3);

In this example we had to do some previous
operations to call the function
“IA_LCD_WRITE_CABLE_DELV”, this must be done to
avoid warnings given by the compiler. But if we
check inside the function, you can find other function
of the same class that is used.

1L << 9);
: 3 < TIEMPO_LCD: 344):
&= ~(iUL << 3):

P 3 < H-L s

The use of constants is other useful practice that
result in a more efficient and fast code. This is
because when you create a constant variable (const
int NAME=VALUE;) the compiler processes it with the
respective steps as it was a common variable.
Otherwise the macros and define values, just tell the
compiler that where it finds the word defined it must
replace it with the value given in the definition
(#define NAME value).

Previous
instructions

Build time is:

Bluetooth:

To use the serial communication, some points have
to be understood before working with this.

In the interruptions (extern C) , you will find the
UART4_IRQHandler functions, which have the
process that are going to be do when a serial data is
received. In this function have been clarified the
order and data that have to be received.

The reception data structure:

X1 SIGN V1 VF

X1 -> The variable to define what is the data type
that are going to be received (A selection of an
algorithm, parameters ...)

SIGN -> “+” or “- “

V1 -> the value, it must be 6 characters long. For
example, if you want to send a single 1, it will be sent
as 2 integer part, and other 4 decimal. So, a number
1, would have to be send as 010000

VF -> is the last data send. To specify that the
communication has ended. It had been set as ‘F’

Previous
instructions

Build time is:

LCD:

This class have been created to work with an LCD
that is connected to the B port, or 12C module,
however the 12C module configuration hasn’t been
tried yet, so the test have to be done connecting the
LCD pins to the STM.

The main functions that must call to use the LCD are:
IA_LCD_CONF_CABLEA_CARIJ (void) -> Function used
to set the configuration of the LCD.
IA_LCD_WRITE_CABLE_DELV (char TXT [],int fila, int
posicion) -> Function used to write in an specified
place of the LCD (this will only write in a single row,
so the long of the char send to the function must be
20 characters long if the initial position is the 0
column).

You can also use the function
IA_LCD_COMMA_CABLE_CARIJ (char com), and use
the define constants declared in LCD.h to specify an
action with the LCD.

Record test results

Build time is:

The test consists in running the code using different
peripherals. In this case are going to be used a LCD,
and a Bluetooth. The hardware and electrical
configuration set in this test is a flat cabled
connection. To test the code would be first be run
the code without a serial connection, to validate the
LCD performance.

Once you check the code, you would find 2 moments
where the LCD function is called. After the
configuration (To write a tittle)

162 | memser(WENSAJE ALGORITHOS ,0, =izeof (NENSAJE ALGORITHOS));

183 strcat (MENSAJE_ALGORITMOS, "ALGORITHOS IA™):
154 IA_LCD_WRITE_CABLE_DELV (MENSAJE_ALGORITMOS, 1,3):

And a second one, given when the code does not find
and algorithm specified to work in, where some
variables are set and LCD write that there is none
algorithm running.

290
291

292
293
294
295
296
297
298
299
300
301
30z SIZE_N_RE

303 VALOR_DISTANCIA=0;
304 TITT ALGORITI

. 31zeof (MENSAJE_ALGORITHOS) +1) 2
RITHO VACIO *):

So when this code is running the correct response is
the shown below.

ALGORITMOS IA
ALGORITMO VACIO W

After compiling and getting the same result, we will
test the communication using the LCD.

So, to understand the result you would have to see
that after sending the data for stablish connection in
the STM, the LCD would have to write the state.
(Remember the structure of the serial information,

and how it has to be send)

case 'C': J® *%%x QPCION DE CONECCION I CUD o
memset (MENSAJE _ALGORITMOS, 0, sizeof (MENSAJE ALGORITMOS) +1) ;
stroat (MENSAJE _ALGORITHOS, "CONECTADO™) ;
IA_LCD_WRITE_CABLE_DELV (MENSAJE_ALGORITHOS, 4,10);
FLAG_RX=0;

break;

So, to test the serial communication, would be use an
application that can be download in any android
device (with Bluetooth) , and a created GUI using
Matlab.

The first test will be made with the “Serial Bluetooth
Terminal” application. Once you download it and
specify the device you want to connect with, you
would see something like the image below.
(connecting with the Device).

= Terminal

necting to HC-05
cted

M2 M3 M4 M5 M6
C+010000F >

Before sending the data with serial, you will see again

the same result as LCD.

ALGORITMOS IA
ALGORITMO VACIO W

After sending the data you will see in the fourth row
that the LCD display the word “CONECTADA” , which
is the way to know that the connection has been
completed succesfully.

ALGORITMOS IA
ALGORITMO VACIO

CONMECTRDO_

As the last test, you can obtain the same result with
the LCD by using the GUI created in Matlab.

Using the GUI will be shown a POP-UP where you can
connect with the STM using the Bluetooth. This GUI
do already have the serial configuration to
communicate with the STM if you follow the
instructions showed in the POP-UP.

(4 GUI_COM - X

Coneccion uControlador

Ingrese el numero o direccion COM del microcontrolador
(O la palabra BLUE , en caso de conectarse por un bluetooth)

com BLUE] CONECTAR

NOTA : Se conectara por Bluetooth ATRAS

4 GUI_COM -

Coneccion uControlador

Ingrese el numero o direccion COM del microcontrolador
(O la palabra BLUE , en caso de conectarse por un bluetocth)

COM BLUE

CONECTAR

NOTA : CONECTADO CON STM BLUE ATRAS

